A098504 Number of compositions of n such that every part occurs with the same multiplicity.
1, 1, 2, 4, 5, 6, 20, 14, 28, 49, 72, 66, 298, 134, 304, 646, 707, 618, 3794, 1178, 4856, 7926, 6300, 4758, 64004, 9267, 19624, 69346, 76148, 30462, 1491780, 55742, 294642, 1181578, 386820, 932804, 21400221, 315974, 1045372, 12081290, 66532116, 958266
Offset: 0
Examples
a(6) = 20 because we have 6, 15, 51, 24, 42, 33, 123, 132, 213, 231, 312, 321, 222, 1122, 1212, 1221, 2112, 2121, 2211 and 111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1300
Programs
-
Maple
G:= sum(sum((l*k)!/l!^k*x^(l*k*(k+1)/2)/product(1-x^(l*j),j=1..k), k=1..40),l=1..55):Gser:=series(G,x=0,55):seq(coeff(Gser,x^n), n=1..46); # Emeric Deutsch, Mar 28 2005 # second Maple program: b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i-1)*x)))) end: a:= n-> `if`(n=0, 1, add((p-> add(coeff(p, x, i)*(i*m)!/(m!)^i, i=0..degree(p)))(b(n/m$2)), m=numtheory[divisors](n))): seq(a(n), n=0..70); # Alois P. Heinz, May 24 2014
-
Mathematica
b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i>n, 0, b[n-i, i-1]*x]]]]; a[n_] := If[n == 0, 1, Sum[Function[p, Sum[Coefficient[p, x, i]*(i*m)!/m!^i, {i, 0, Exponent[p, x]}]][b[n/m, n/m]], {m, Divisors[n]}]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
Formula
G.f.: Sum(Sum((l*k)!/l!^k*x^(l*k*(k+1)/2)/Product(1-x^(l*j), j=1..k), k=1..infinity), l=1..infinity).
Extensions
More terms from Emeric Deutsch, Mar 28 2005
a(0)=1 from Alois P. Heinz, May 24 2014