cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098504 Number of compositions of n such that every part occurs with the same multiplicity.

Original entry on oeis.org

1, 1, 2, 4, 5, 6, 20, 14, 28, 49, 72, 66, 298, 134, 304, 646, 707, 618, 3794, 1178, 4856, 7926, 6300, 4758, 64004, 9267, 19624, 69346, 76148, 30462, 1491780, 55742, 294642, 1181578, 386820, 932804, 21400221, 315974, 1045372, 12081290, 66532116, 958266
Offset: 0

Views

Author

Vladeta Jovovic, Oct 26 2004

Keywords

Examples

			a(6) = 20 because we have 6, 15, 51, 24, 42, 33, 123, 132, 213, 231, 312, 321, 222, 1122, 1212, 1221, 2112, 2121, 2211 and 111111.
		

Crossrefs

Programs

  • Maple
    G:= sum(sum((l*k)!/l!^k*x^(l*k*(k+1)/2)/product(1-x^(l*j),j=1..k), k=1..40),l=1..55):Gser:=series(G,x=0,55):seq(coeff(Gser,x^n), n=1..46); # Emeric Deutsch, Mar 28 2005
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
           expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i-1)*x))))
        end:
    a:= n-> `if`(n=0, 1, add((p-> add(coeff(p, x, i)*(i*m)!/(m!)^i,
            i=0..degree(p)))(b(n/m$2)), m=numtheory[divisors](n))):
    seq(a(n), n=0..70);  # Alois P. Heinz, May 24 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i>n, 0, b[n-i, i-1]*x]]]]; a[n_] := If[n == 0, 1, Sum[Function[p, Sum[Coefficient[p, x, i]*(i*m)!/m!^i, {i, 0, Exponent[p, x]}]][b[n/m, n/m]], {m, Divisors[n]}]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)

Formula

G.f.: Sum(Sum((l*k)!/l!^k*x^(l*k*(k+1)/2)/Product(1-x^(l*j), j=1..k), k=1..infinity), l=1..infinity).

Extensions

More terms from Emeric Deutsch, Mar 28 2005
a(0)=1 from Alois P. Heinz, May 24 2014