A098535 Expansion of (1+x)^(1/3)/(1+x-9*x^4)^(1/3).
1, 0, 0, 0, 3, -3, 3, -3, 21, -39, 57, -75, 219, -489, 885, -1407, 3000, -6609, 13179, -23655, 46353, -96960, 198534, -381504, 742638, -1504011, 3071973, -6096117, 12008415, -24042522, 48733248, -97896198, 195048966, -390235269
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
Q:=Rationals(); R
:=PowerSeriesRing(Q,30); Coefficients(R!((1+x)^(1/3)/(1+x-9*x^4)^(1/3))); // G. C. Greubel, Jan 17 2018 -
Mathematica
CoefficientList[Series[(1+x)^(1/3)/(1+x-9*x^4)^(1/3), {x,0,50}], x] (* G. C. Greubel, Jan 17 2018 *)
-
PARI
x='x+O('x^30); Vec((1+x)^(1/3)/(1+x-9*x^4)^(1/3)) \\ G. C. Greubel, Jan 17 2018
Comments