cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A094941 a(n) is n! times the coefficient of Pi^floor(n/2) in the volume of an n-dimensional unit ball.

Original entry on oeis.org

1, 2, 2, 8, 12, 64, 120, 768, 1680, 12288, 30240, 245760, 665280, 5898240, 17297280, 165150720, 518918400, 5284823040, 17643225600, 190253629440, 670442572800, 7610145177600, 28158588057600, 334846387814400, 1295295050649600
Offset: 0

Views

Author

Michael Somos, May 24 2004

Keywords

Examples

			The volume of a sphere is (4/3)*Pi*r^3 so a(3) = 3!*4/3 = 8.
G.f. = 1 + 2*x + 2*x^2 + 8*x^3 + 12*x^4 + 64*x^5 + 120*x^6 + 768*x^7 + ...
		

Crossrefs

Cf. A087299.

Programs

  • Mathematica
    Join[{1}, Table[If[OddQ[n], 2^n ((n - 1)/2)!, 2(n - 1)!/((n/2 - 1)!)], {n, 1, 25}]] (* Robert A. Russell, May 07 2006 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[x^2] (1 + Sqrt[Pi] Erf[x]), {x, 0, n}]] (* Michael Somos, Jan 24 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], If[ OddQ[n], 2^n ((n - 1)/2)!, 2 (n - 1)! / ((n/2 - 1)!)]] (* Michael Somos, Jan 24 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = exp(x^2 + x * O(x^n)); n! * polcoeff( A * (1 + 2*intformal( 1/A)), n))}

Formula

E.g.f.: exp(-x^2)*(1 + 2*Integral_{t=0..x} exp(-t^2) dt).
E.g.f. A(x) satisfies A'(x) = 2+2*x*A(x), A(0)=1.
a(n) = (2*n - 2) * a(n-2), if n>1.
a(n) * a(n+1) = n! * 2^(n+1).
a(n) = Pi^floor((n+1)/2)*Integral_{x>=0} (x^n*exp(-Pi*x^2/4)). - Paul Barry, Mar 01 2011
a(n+1) = 2*n*a(n-1); a(2n) = (2n)!/n! = A001813(n); a(2n+1) = 2^(2n+1)*n! = 2*A047053(n) = A098560(n) for n>0. - Henry Bottomley, Jun 03 2011
0 = a(n)*(2*a(n+1) - a(n+3)) + a(n+1)*a(n+2) if n>=0. - Michael Somos, Jan 24 2014; corrected by Georg Fischer, Jun 02 2021
Showing 1-1 of 1 results.