cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098576 a(n) = Sum_{k=0..floor(n/4)} C(n-2*k,2*k) * 3^k.

Original entry on oeis.org

1, 1, 1, 1, 4, 10, 19, 31, 55, 109, 220, 424, 793, 1489, 2845, 5473, 10480, 19954, 37963, 72391, 138259, 263989, 503608, 960400, 1831969, 3495505, 6669865, 12725425, 24276892, 46314874, 88362451, 168586303, 321640831, 613639981, 1170726484
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2) + 3*Self(n-4): n in [1..30]]; // G. C. Greubel, Feb 03 2018
  • Mathematica
    Table[Sum[Binomial[n-2k,2k]3^k,{k,0,Floor[n/4]}],{n,0,40}] (* or *) LinearRecurrence[{2,-1,0,3},{1,1,1,1},40] (* Harvey P. Dale, Dec 04 2011 *)
  • PARI
    x='x+O('x^30); Vec((1-x)/((1-x)^2-3*x^4)) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: (1-x)/((1-x)^2-3*x^4).
a(n) = 2*a(n-1) - a(n-2) + 3*a(n-4).

A100135 a(n) = Sum_{k=0..floor(n/6)} C(n-3k,3k) * 2^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 9, 21, 41, 71, 113, 173, 269, 443, 777, 1413, 2577, 4615, 8065, 13813, 23413, 39691, 67801, 116973, 203337, 354519, 617345, 1071197, 1851677, 3192731, 5501033, 9485621, 16381185, 28330119, 49035777, 84883621, 146875717, 253983307, 438968761
Offset: 0

Views

Author

Paul Barry, Nov 06 2004

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3, 1, 0, 0, 2},{1,1,1,1,1,1},38] (* James C. McMahon, Dec 22 2023 *)

Formula

G.f.: (1-x)^2/((1-x)^3 - 2*x^6).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 2*a(n-6).

A098577 a(n) = Sum_{k=0..floor(n/5)} C(n-3*k,2*k) * 2^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 13, 21, 31, 47, 77, 133, 231, 391, 645, 1053, 1727, 2863, 4781, 7989, 13303, 22071, 36565, 60621, 100655, 167295, 278077, 461989, 767143, 1273607, 2114661, 3511869, 5833055, 9688527, 16091213, 26723221, 44378967, 73700823
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,1,]; [n le 5 select I[n] else 2*Self(n-1) -Self(n-2) + 2*Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 03 2018
  • Mathematica
    LinearRecurrence[{2,-1,0,0,2},{1,1,1,1,1},40] (* Harvey P. Dale, Feb 11 2015 *)
    CoefficientList[Series[(1-x)/((1-x)^2-2*x^5), {x,0,50}], x] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x)/((1-x)^2-2*x^5)) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: (1-x)/((1-x)^2-2*x^5).
a(n) = a(n-1) - a(n-2) + 2*a(n-5).
Showing 1-3 of 3 results.