cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098577 a(n) = Sum_{k=0..floor(n/5)} C(n-3*k,2*k) * 2^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 13, 21, 31, 47, 77, 133, 231, 391, 645, 1053, 1727, 2863, 4781, 7989, 13303, 22071, 36565, 60621, 100655, 167295, 278077, 461989, 767143, 1273607, 2114661, 3511869, 5833055, 9688527, 16091213, 26723221, 44378967, 73700823
Offset: 0

Views

Author

Paul Barry, Sep 16 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,1,]; [n le 5 select I[n] else 2*Self(n-1) -Self(n-2) + 2*Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 03 2018
  • Mathematica
    LinearRecurrence[{2,-1,0,0,2},{1,1,1,1,1},40] (* Harvey P. Dale, Feb 11 2015 *)
    CoefficientList[Series[(1-x)/((1-x)^2-2*x^5), {x,0,50}], x] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-x)/((1-x)^2-2*x^5)) \\ G. C. Greubel, Feb 03 2018
    

Formula

G.f.: (1-x)/((1-x)^2-2*x^5).
a(n) = a(n-1) - a(n-2) + 2*a(n-5).