A098587 Decimal expansion of the accumulation point of the logistic map.
3, 5, 6, 9, 9, 4, 5, 6, 7, 1, 8, 7, 0, 9, 4, 4, 9, 0, 1, 8, 4, 2, 0, 0, 5, 1, 5, 1, 3, 8, 6, 4, 9, 8, 9, 3, 6, 7, 6, 3, 8, 3, 6, 9, 1, 1, 5, 1, 4, 8, 3, 2, 3, 7, 8, 1, 0, 7, 9, 7, 5, 5, 2, 9, 9, 2, 1, 3, 6, 2, 8, 8, 7, 5, 0, 0, 1, 3, 6, 7, 7, 7, 5, 2, 6, 3, 2, 1, 0, 3, 4, 2, 1, 6, 3
Offset: 1
Examples
mu_infty = 3.56994567...
References
- Gian Italo Bischi, Rosa Carini, Laura Gardini, and Paolo Tenti, Sulle orme del caos: comportamenti complessi in modelli matematici semplici. Bruno Mondadori (Milano), 2004. See pp. 84, 93, 96-97. (In Italian)
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.9, p. 66.
- S. Wolfram, A New Kind of Science, Notes from the Book, Wolfram Media, 2002, page 921.
Links
- Boumediene Hamzi and Kamaludin Dingle, Simplicity bias, algorithmic probability, and the random logistic map, arXiv:2401.00593 [cs.IT], 2023. See p. 7.
- James P. L. Tan, Simulating extrapolated dynamics with parameterization networks, arXiv:1902.03440 [nlin.CD], 2019.
- Eric Weisstein's World of Mathematics, Logistic Map.
- Eric Weisstein's World of Mathematics, Feigenbaum Constant.
Extensions
More terms from David Broadhurst, Feb 01 2005