A098613 Expansion of psi(x^2) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.
1, 1, 3, 4, 7, 10, 17, 23, 35, 48, 69, 93, 131, 173, 236, 310, 413, 536, 704, 903, 1170, 1489, 1904, 2403, 3044, 3811, 4784, 5951, 7409, 9157, 11325, 13912, 17095, 20891, 25519, 31029, 37708, 45632, 55184, 66495, 80050, 96064, 115173, 137680, 164425, 195860
Offset: 0
Keywords
Examples
G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 23*x^7 + ... G.f. = q^5 + q^29 + 3*q^53 + 4*q^77 + 7*q^101 + 10*q^125 + 17*q^149 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] / (2 x^(1/4) QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Oct 29 2013 *) a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[ x^2, x^4]^2), {x, 0, n}]; (* Michael Somos, Oct 29 2013 *) nmax = 40; CoefficientList[ Series[Product[(1 + x^k) * (1 + x^(2*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^2, x^2]^3, {x, 0, n}]; (* Michael Somos, Sep 07 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x]^2 QPochhammer[ -x, x]^3, {x, 0, n}]; (* Michael Somos, Sep 07 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ -x^2, x^2]^2, {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n+1)-1)\2, x^(k^2+k)) / eta(x + x * O(x^n)), n))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 / (eta(x + A) * eta(x^2 + A)), n))};
-
PARI
{a(n) = if( n<0,0, polcoeff( sum(k=0, 2*n+1, prod(i=1, k, (1 - x^(2*n+2 - i)) / (1 - x^i))) / 2, n^2))};
Formula
Expansion of chi(x) / chi(-x^2)^3 = 1 / (chi(-x)* chi(-x^2)^2) = 1 / (chi(x)^2 * chi(-x)^3) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Sep 07 2015
Expansion of q^(-5/24) * eta(q^4)^2 / (eta(q) * eta(q^2)) in powers of q.
Euler transform of period 4 sequence [1, 2, 1, 0, ...].
G.f. A(x) is the limit of x^(n^2+n) * P_{2*n+1}(1/x)/2 where P_n(q) = Sum_{k=0..n} C(n, k; q) and C(n, k; q) is the q-binomial coefficients. See A083906 for P_n(q).
G.f.: (Sum_{k>0} x^(k^2-k)) / (Product_{k>0} (1 - x^k)).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 8^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A143161. - Michael Somos, Sep 07 2015
G.f.: Product_{k>=1} (1 + x^(2*k))^2 / (1 - x^(2*k-1)). - Michael Somos, Dec 01 2019
Comments