cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098641 Number of partitions of the n-th Fibonacci number into Fibonacci numbers.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 14, 41, 157, 803, 5564, 53384, 718844, 13783708, 380676448, 15298907733, 902438020514, 78720750045598, 10220860796171917, 1986422867300209784, 580763241873718042562, 256553744608217295298827, 171912553856721407543178940, 175350753369071026461010505478
Offset: 0

Views

Author

Marcel Dubois de Cadouin (dubois.ml(AT)club-internet.fr), Oct 27 2004

Keywords

Comments

a(n) = A003107(A000045(n)).

Examples

			n=6: A000045(6)=8, a(6) = #{8, 5+3, 5+2+1, 5+1+1+1, 3+3+2, 3+3+1+1, 3+2+2+1, 3+2+1+1+1, 3+1+1+1+1+1, 2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+1+1+1+1+1+1, 1+1+1+1+1+1+1+1} = 14; the other partitions of 8 into parts with at least one non-Fibonacci number: 7+1, 6+2, 6+1+1, 4+4, 4+3+1, 4+2+2, 4+2+1+1 and 4+1+1+1+1.
		

Crossrefs

Programs

  • Mathematica
    cl = CoefficientList[ Series[1/Product[(1 - x^Fibonacci[i]), {i, 2, 21}], {x, 0, 10950}], x]; cl[[ Table[ Fibonacci[i] + 1, {i, 21}] ]] (* Robert G. Wilson v, Apr 25 2005 *)

Formula

a(n) = A098642(n) + A098643(n) + A098644(n).

Extensions

Corrected and extended by Reinhard Zumkeller, Apr 24 2005
a(15)-a(21) from Robert G. Wilson v, Apr 25 2005
Entry revised by N. J. A. Sloane, Mar 29 2006
a(0), a(22)-a(23) from Alois P. Heinz, Sep 20 2018

A098643 Number of partitions of Fibonacci(n) into even Fibonacci numbers.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 6, 0, 0, 52, 0, 0, 1471, 0, 0, 135029, 0, 0, 41906834, 0, 0, 45729175098, 0, 0
Offset: 1

Views

Author

Marcel Dubois de Cadouin (dubois.ml(AT)club-internet.fr), Oct 27 2004

Keywords

Comments

a(3i-1)=a(3i+1)=0.

Crossrefs

Programs

  • Mathematica
    cl = CoefficientList[ Series[1/Product[(1 - x^Fibonacci[3i]), {i, 8}], {x, 0, 46368}], x]; cl[[Table[Fibonacci[i] + 1, {i, 21}]]] (* Robert G. Wilson v *)

Extensions

More terms from Franklin T. Adams-Watters and Robert G. Wilson v, Mar 28 2006

A098642 Number of partitions of Fibonacci(n) into odd Fibonacci numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 11, 28, 87, 331, 1565, 9440, 72908, 712687, 8940809, 146775560, 3135694178, 86745468962, 3153522201617, 151857397825012, 9589042822673342, 797159462260375958, 88429042471401581924, 13020775433175768654191, 2532864078831923248348591
Offset: 0

Views

Author

Marcel Dubois de Cadouin (dubois.ml(AT)club-internet.fr), Oct 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    cl = CoefficientList[ Series[1/Product[(1 - x^Fibonacci[3i + 1])(1 - x^Fibonacci[3i - 1]), {i, 8}], {x, 0, 46370}], x]; cl[[Table[Fibonacci[i] + 1, {i, 24}]]] (* Robert G. Wilson v *)

Extensions

Corrected and extended by Franklin T. Adams-Watters and Robert G. Wilson v, Mar 28 2006
a(0)=1 prepended and a(25) from Alois P. Heinz, Jun 02 2023
Showing 1-3 of 3 results.