cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098686 Decimal expansion of Sum_{n >= 1} n/(n^n).

Original entry on oeis.org

1, 6, 2, 8, 4, 7, 3, 7, 1, 2, 9, 0, 1, 5, 8, 4, 4, 4, 7, 0, 5, 5, 8, 8, 9, 1, 4, 3, 2, 6, 1, 8, 8, 3, 0, 3, 1, 6, 5, 0, 5, 4, 0, 3, 1, 0, 9, 5, 4, 6, 2, 1, 4, 1, 6, 4, 7, 4, 1, 3, 6, 4, 3, 0, 0, 9, 2, 3, 8, 5, 9, 7, 0, 5, 1, 8, 1, 1, 9, 8, 0, 4, 8, 6, 4, 3, 2, 6, 4, 4, 0, 3, 1, 2, 9, 6, 2, 0, 5, 3, 4, 3, 6, 5, 2
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Oct 27 2004

Keywords

Comments

From Peter Bala, Oct 17 2019: (Start)
Equals 1 + Integral_{x = 0..1} x/x^x dx. More generally, for k = 0,1,2,..., Sum_{n >= k+1} n^k/n^n = Integral_{x = 0..1} x^k/x^x dx.
Also equals the double integral Integral_{x = 0..1, y = 0..1} (1 + x*y)/ (x*y)^(x*y) dx dy. Cf. A073009. (End)
Equals Integral_{x = 0..1} (1 - x*log(x))/x^x dx. - Peter Bala, Jul 21 2022
From Peter Bala, Nov 02 2022: (Start)
Equals Integral_{x = 0..1} (1 + x*log(x)^2)/x^x dx.
Equals the double integral Integral_{x = 0..1, y = 0..1} (x*y*log(x*y) - 1)/( (x*y)^(x*y) * log(x*y) ) dx dy and also equals 1 - Integral_{x = 0..1, y = 0..1} x*y/( (x*y)^(x*y) * log(x*y) ) dx dy by Glasser, Theorem 1. (End)

Examples

			1.62847371290158444705588914326188303165054031095462141647413643009...
		

Crossrefs

Programs

  • Maple
    evalf(add(n/(n^n), n = 0..65), 100); # Peter Bala, Nov 02 2022
  • Mathematica
    s = 0; Do[s = N[s + n/n^n, 128], {n, 62}]; RealDigits[s, 10, 111][[1]] (* Robert G. Wilson v, Nov 03 2004 *)
  • PARI
    suminf(n=1, 1/n^(n-1)) \\ Michel Marcus, Oct 21 2019

Extensions

More terms from Robert G. Wilson v, Nov 03 2004