cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A098691 Array T(q,n) by antidiagonals: number of self-reciprocal polynomials of degree 2*n over GF(q) (for q >= 2 and n >= 1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 4, 4, 2, 3, 6, 10, 10, 3, 3, 9, 20, 32, 24, 5, 4, 12, 35, 78, 102, 60, 9, 4, 16, 56, 162, 312, 340, 156, 16, 5, 20, 84, 300, 777, 1300, 1170, 410, 28, 5, 25, 120, 512, 1680, 3885, 5580, 4096, 1092, 51, 6, 30, 165, 820, 3276, 9800, 19995, 24414
Offset: 2

Views

Author

Ralf Stephan, Sep 21 2004

Keywords

Comments

Also, number of self-complementary primitive necklaces of length n in q colors.

Examples

			  [q=2]: 1,  1,  1,   2,    3,    5,     9,     16, ...
  [q=3]: 1,  2,  4,  10,   24,   60,   156,    410, ...
  [q=4]: 2,  4, 10,  32,  102,  340,  1170,   4096, ...
  [q=5]: 2,  6, 20,  78,  312, 1300,  5580,  24414, ...
  [q=6]: 3,  9, 35, 162,  777, 3885, 19995, 104976, ...
  [q=7]: 3, 12, 56, 300, 1680, 9800, 58824, 360300, ...
  ...
		

Crossrefs

Rows are A000048 (q=2), A006575 (q=3).
Columns 1-4 are A004526, A002620, A000292, 2*A011863.
Main diagonal is in A098692.

Programs

  • PARI
    T(q,n) = sumdiv(n, d, if(d%2, moebius(d) * (q^(n/d)-q%2), 0)) / (2*n); \\ Andrew Howroyd, Aug 21 2019
    
  • PARI
    T(q,n) = {if(q%2 && n == 2^logint(n,2), q^n-1, sumdiv(n, d, if(d%2, moebius(d)*q^(n/d)))) / (2*n)} \\ Andrew Howroyd, Aug 22 2019

Formula

T(q, n) = (q^n-1)/(2*n) for q odd and n=2^s; otherwise Sum_{d|n, d odd} mu(d)*q^(n/d) / (2*n).
T(q, n) = Sum_{d|n, d odd} mu(d) * (q^(n/d) - (q mod 2)) / (2*n). - Andrew Howroyd, Aug 21 2019
Showing 1-1 of 1 results.