Original entry on oeis.org
1, 2, 10, 78, 777, 9800, 149796, 2690420, 55555500, 1296871224, 33773107758, 970753545580, 30527491279005, 1042604500906800, 38430716820193144, 1520662246114589640, 64291516462902839175, 2892426397164199846860, 137970526315789473684210, 6955460736173788715925048, 369510689788116404049535299
Offset: 1
- Alois P. Heinz, Table of n, a(n) for n = 1..387
- H. Meyn and W. Götz, Self-reciprocal polynomials over finite fields, Séminaire Lotharingien de Combinatoire, B21d (1989), 8 pp.
- R. L. Miller, Necklaces, symmetries and self-reciprocal polynomials, Discr. Math. 22 (1978), 25-33.
-
with(numtheory):
a:= n-> `if`(n=2^ilog2(n) and n>1, (n+1)^n-1, add(mobius(d)*
(n+1)^(n/d), d=select(x-> x::odd, divisors(n))))/(2*n):
seq(a(n), n=1..20); # Alois P. Heinz, Aug 21 2019
A006575
Number of primitive (aperiodic, or Lyndon) asymmetric rhythm cycles: ones having no nontrivial shift automorphism.
Original entry on oeis.org
1, 2, 4, 10, 24, 60, 156, 410, 1092, 2952, 8052, 22140, 61320, 170820, 478288, 1345210, 3798240, 10761660, 30585828, 87169608, 249055976, 713205900, 2046590844, 5883948540, 16945772184, 48882035160, 141214767876
Offset: 1
Example. For n=3, out of 6=A115114(3) admissible rhythm cycles (necklaces) 000000, 100000, 110000, 101000, 111000 and 101010, only the first and the last ones are imprimitive. Thus a(3)=4.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Joerg Arndt, Table of n, a(n) for n = 1..200
- R. W. Hall and P. Klingsberg, Asymmetric Rhythms, Tiling Canons and Burnside's Lemma, Bridges Proceedings, pp. 189-194, 2004 (Winfield, Kansas).
- R. W. Hall and P. Klingsberg, Asymmetric Rhythms and Tiling Canons, Preprint, 2004; The American Mathematical Monthly, Volume 113, 2006 - Issue 10, [alternative link].
- D. Shanks and M. Lal, Bateman's constants reconsidered and the distribution of cubic residues, Math. Comp., 26 (1972), 265-285.
-
a[n_] := DivisorSum[n, If[BitAnd[#, 1]==1, MoebiusMu[#]*(3^(n/#)-1), 0]&] / (2n); Array[a, 30] (* Jean-François Alcover, Dec 01 2015, after Joerg Arndt *)
-
a(n) = sumdiv( n, d, if ( bitand(d,1), moebius(d) * (3^(n/d)-1) , 0 ) ) / (2*n); /* Joerg Arndt, Dec 30 2012 */
Showing 1-2 of 2 results.
Comments