A133267 Number of Lyndon words on {1, 2, 3} with an even number of 1's.
2, 1, 4, 8, 24, 56, 156, 400, 1092, 2928, 8052, 22080, 61320, 170664, 478288, 1344800, 3798240, 10760568, 30585828, 87166656, 249055976, 713197848, 2046590844, 5883926400, 16945772184, 48881973840, 141214767876, 408513980160, 1183282368360, 3431518388960
Offset: 1
Keywords
Examples
For n=3, out of 8 possible Lyndon words: 112, 113, 122, 123, 132, 133, 223, 233, only the first two and the last two have an even number of 1's. Thus a(3) = 4.
References
- M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..650
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- Frank Ruskey and J. Sawada, An Efficient Algorithm for Generating Necklaces with Fixed Density, SIAM J. Computing, 29 (1999) 671-684.
- Frank Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Mike Zabrocki, Course website
Programs
-
Maple
with(numtheory): a:= n-> add(mobius(d) *3^(n/d), d=divisors(n))/n -add(mobius(d) *(3^(n/d)-1), d=select(x-> irem(x, 2)=1, divisors(n)))/ (2*n): seq(a(n), n=1..30); # Alois P. Heinz, Jul 29 2011
-
Mathematica
a[n_] := DivisorSum[n, MoebiusMu[#]*(3^(n/#) - (1/2)*Boole[OddQ[#]]*(3^(n/#)-1))&]/n; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 21 2017, after Alois P. Heinz *)
-
PARI
a133267(n) = sumdiv(n, d, moebius(d)*3^(n/d)/n - if (d%2, moebius(d)*(3^(n/d)-1)/(2*n))); \\ Michel Marcus, May 17 2018
Formula
a(1)=2; for n>1, if n=2^k for some k, then a(n) = ((3^(n/2)-1)^2)/(2*n). Otherwise, if n is even then a(n) = Sum_{d|n, d odd} mu(d)*(3^(n/d)-2*3^(n/(2*d)))/(2*n). If n is odd then a(n) = Sum_{d|n, d odd} mu(d)*(3^(n/d)-1)/(2*n).
Comments