cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A136704 Number of Lyndon words on {1,2,3} with an odd number of 1's and an odd number of 2's.

Original entry on oeis.org

0, 1, 2, 5, 12, 30, 78, 205, 546, 1476, 4026, 11070, 30660, 85410, 239144, 672605, 1899120, 5380830, 15292914, 43584804, 124527988, 356602950, 1023295422, 2941974270, 8472886092, 24441017580, 70607383938
Offset: 1

Views

Author

Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Jan 16 2008

Keywords

Comments

This sequence is also the number of Lyndon words on {1,2,3} with an even number of 1's and an odd number of 2's except that a(1) = 1 in this case.
Also, a Lyndon word is the aperiodic necklace representative which is lexicographically earliest among its cyclic shifts. Thus we can apply the fixed density formulas: L_k(n,d) = Sum L(n-d, n_1,..., n_(k-1)); n_1 + ... +n_(k-1) = d where L(n_0, n_1,...,n_(k-1)) = (1/n) Sum mu(j)*[(n/j)!/((n_0/j)!(n_1/j)!...(n_(k-1)/j)!)]; j|gcd(n_0, n_1,...,n_(k-1)). For this sequence, sum over n_0, n_1 = odd.

Examples

			For n = 3, out of 8 possible Lyndon words: 112, 113, 122, 123, 132, 133, 223, 233, only 123 and 132 have an odd number of both 1's and 2's. Thus a(3) = 2.
		

References

  • M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.

Crossrefs

Programs

  • Mathematica
    a[1] = 0;
    a[n_] := If[OddQ[n], Sum[MoebiusMu[d] * 3^(n/d), {d, Divisors[n]}], Sum[Boole[OddQ[d]] MoebiusMu[d] * (3^(n/d)-1), {d, Divisors[n]}]]/(4n);
    Array[a, 27] (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    a(n) = if (n==1, 0, if (n % 2, sumdiv(n, d, moebius(d)*3^(n/d))/(4*n), sumdiv(n, d, if (d%2, moebius(d)*(3^(n/d)-1)))/(4*n))); \\ Michel Marcus, Aug 26 2019

Formula

a(1) = 0; for n>1, if n = odd then a(n) = Sum_{d|n} (mu(d)*3^(n/d))/(4n). If n = even, then a(n) = Sum_{d|n, d odd} (mu(d)*(3^(n/d)-1))/(4n).
Showing 1-1 of 1 results.