Original entry on oeis.org
1, 5, 30, 205, 1476, 11070, 85410, 672605, 5380830, 43584804, 356602950, 2941974270, 24441017580, 204257075490, 1715759433624, 14476720225405, 122626336026960, 1042323856225470, 8887182353111790, 75985409119105764, 651303506735164140, 5595289216952336550
Offset: 1
- Hao, Bai Lin, Elementary symbolic dynamics and chaos in dissipative systems. World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. xvi+460 pp. ISBN: 9971-50-682-3; 9971-50-698-X
-
a[n_] := Sum[Boole[OddQ[d]] MoebiusMu[d] (3^(2n/d)-1), {d, Divisors[n]}]/(8n);
Array[a, 22] (* Jean-François Alcover, Aug 26 2019 *)
-
a(n) = sumdiv(n>>valuation(n,2), d, moebius(d)*(3^(2*n/d)-1))/(8*n); \\ Andrew Howroyd, Nov 11 2018
Offset corrected and terms a(14) and beyond from
Andrew Howroyd, Nov 11 2018
A253077
Bisection of A136704 (divided by 2).
Original entry on oeis.org
0, 1, 6, 39, 273, 2013, 15330, 119572, 949560, 7646457, 62263994, 511647711, 4236443046, 35303691969, 295820592090, 2490618533403, 21057047599918, 178684089639276, 1521229411793910, 12988958823773660, 111198159686496300, 954235370332956621, 8206424184863387028
Offset: 1
Offset corrected and more terms added by
Amiram Eldar, May 08 2024
A136703
Number of Lyndon words on {1,2,3} with an even number of 1's and an even number of 2's.
Original entry on oeis.org
1, 0, 2, 3, 12, 26, 78, 195, 546, 1452, 4026, 11010, 30660, 85254, 239144, 672195, 1899120, 5379738, 15292914, 43581852, 124527988, 356594898, 1023295422, 2941952130, 8472886092, 24440956260, 70607383938
Offset: 1
Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Jan 16 2008
For n=3, out of 8 possible Lyndon words: 112, 113, 122, 123, 132, 133, 223, 233, only 113 and 223 have an even number of both 1's and 2's. Thus a(3)=2.
- M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- F. Ruskey and J. Sawada, An Efficient Algorithm for Generating Necklaces with Fixed Density, SIAM J. Computing, 29 (1999) 671-684.
- M. Zabrocki, MATH5020 York University Course Website
Showing 1-3 of 3 results.
Comments