cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A253076 Bisection of A136704.

Original entry on oeis.org

1, 5, 30, 205, 1476, 11070, 85410, 672605, 5380830, 43584804, 356602950, 2941974270, 24441017580, 204257075490, 1715759433624, 14476720225405, 122626336026960, 1042323856225470, 8887182353111790, 75985409119105764, 651303506735164140, 5595289216952336550
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2015

Keywords

Comments

A sequence in Table 1 of Hao (1991) appears to match this sequence, but there are not enough terms there to be certain. It is possible that Hao's 1989 book will clarify things, but I do not have access to it.

References

  • Hao, Bai Lin, Elementary symbolic dynamics and chaos in dissipative systems. World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. xvi+460 pp. ISBN: 9971-50-682-3; 9971-50-698-X

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Boole[OddQ[d]] MoebiusMu[d] (3^(2n/d)-1), {d, Divisors[n]}]/(8n);
    Array[a, 22] (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    a(n) = sumdiv(n>>valuation(n,2), d, moebius(d)*(3^(2*n/d)-1))/(8*n); \\ Andrew Howroyd, Nov 11 2018

Formula

a(n) = (1/8*n) * Sum_{d|n, d odd} mu(d)*(3^(2*n/d) - 1). - Andrew Howroyd, Nov 11 2018

Extensions

Offset corrected and terms a(14) and beyond from Andrew Howroyd, Nov 11 2018

A253077 Bisection of A136704 (divided by 2).

Original entry on oeis.org

0, 1, 6, 39, 273, 2013, 15330, 119572, 949560, 7646457, 62263994, 511647711, 4236443046, 35303691969, 295820592090, 2490618533403, 21057047599918, 178684089639276, 1521229411793910, 12988958823773660, 111198159686496300, 954235370332956621, 8206424184863387028
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2015

Keywords

Crossrefs

Extensions

Offset corrected and more terms added by Amiram Eldar, May 08 2024

A136703 Number of Lyndon words on {1,2,3} with an even number of 1's and an even number of 2's.

Original entry on oeis.org

1, 0, 2, 3, 12, 26, 78, 195, 546, 1452, 4026, 11010, 30660, 85254, 239144, 672195, 1899120, 5379738, 15292914, 43581852, 124527988, 356594898, 1023295422, 2941952130, 8472886092, 24440956260, 70607383938
Offset: 1

Views

Author

Jennifer Woodcock (jennifer.woodcock(AT)ugdsb.on.ca), Jan 16 2008

Keywords

Comments

A Lyndon word is the aperiodic necklace representative which is lexicographically earliest among its cyclic shifts. Thus we can apply the fixed density formulas: L_k(n,d)=sum L(n-d, n_1,..., n_(k-1)); n_1+...+n_(k-1)=d where L(n_0, n_1,...,n_(k-1))=(1/n)sum mu(j)*[(n/j)!/((n_0/j)!(n_1/j)!...(n_(k-1)/j)!)]; j|gcd(n_0, n_1,...,n_(k-1)). For this sequence, sum over n_0,n_1=even.

Examples

			For n=3, out of 8 possible Lyndon words: 112, 113, 122, 123, 132, 133, 223, 233, only 113 and 223 have an even number of both 1's and 2's. Thus a(3)=2.
		

References

  • M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.

Crossrefs

Formula

a(1)=1; for n>1, if n=odd then a(n)= sum(mu(d)*3^(n/d))/(4n); d|n. If n=even, then a(n)= sum(mu(d)*3^(n/d))/n; d|n -(3/4)*sum(mu(d)*(3^(n/d)-1))/n; d|n, d odd.
Showing 1-3 of 3 results.