cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098693 G.f.: q*Product_{k>0} (1-q^(12k))(1+q^(12k-1))(1+q^(12k-11))/(1-q^k).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 26, 37, 52, 72, 99, 134, 180, 240, 317, 416, 542, 702, 904, 1158, 1476, 1872, 2364, 2973, 3724, 4647, 5778, 7160, 8844, 10890, 13370, 16368, 19984, 24336, 29561, 35822, 43308, 52242, 62884, 75536, 90552, 108342, 129384, 154232
Offset: 1

Views

Author

Ralf Stephan, Sep 21 2004

Keywords

Comments

Coefficients of a q-series of Andrews inspired by Ramanujan.

Crossrefs

Cf. A036018.

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[x*Product[(1-x^(12*k)) * (1+x^(12*k-1)) * (1+x^(12*k-11))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2/(1+x^k)* prod(i=1, k, (1+x^i)^2/(1-x^(2*i-1))/(1-x^(2*i)), 1+x*O(x^(n-k^2)))), n))} /* Michael Somos, Sep 19 2006 */

Formula

Euler transform of period 24 sequence [ 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 0, ...]. - Michael Somos, Sep 19 2006
Given g.f. A(x), then B(x)=A(x)+A(x)^2 satisfies 0=f(B(x), B(x^2)) where f(u, v)=(1+6*u)*v*(1+2*v)-u^2. - Michael Somos, Sep 19 2006
G.f.: q*{Sum_{k} q^(24k^2+10k) +q^(24k^2+14k+1) }/{Sum_{k} (-1)^k q^((3k^2+k)/2) }. - Michael Somos, Sep 19 2006
G.f.: q*Product_{k>0} (1-q^(12k))(1+q^(12k-1))(1+q^(12k-11))/(1-q^k).
G.f.: Sum_{k>0} Prod[i=1..k, (1+q^i)^2]*(1+q^k)*q^(k^2) /{(1-q)(1-q^2)...(1-q^(2k))}.
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(9/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015