A098706 a(n) = 2*A076218(n).
0, 2, 10, 290, 9802, 332930, 11309770, 384199202, 13051463050, 443365544450, 15061377048202, 511643454094370, 17380816062160330, 590436102659356802, 20057446674355970890, 681362750825443653410, 23146276081390728245002, 786292024016459316676610
Offset: 0
Examples
a(3) = 2*5*29 = 2*145.
Links
- Colin Barker, Table of n, a(n) for n = 0..650
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Soumeya M. Tebtoub, Hacène Belbachir, and László Németh, Integer sequences and ellipse chains inside a hyperbola, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 17-18.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Programs
-
Mathematica
LinearRecurrence[{35, -35, 1}, {0, 2, 10, 290}, 18] (* or *) CoefficientList[Series[2 x (1 - 30 x + 5 x^2)/((1 - x) (1 - 34 x + x^2)), {x, 0, 17}], x] (* Michael De Vlieger, Nov 02 2020 *)
-
PARI
concat(0, Vec(2*x*(1-30*x+5*x^2)/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Mar 02 2016
Formula
From Colin Barker, Mar 02 2016: (Start)
a(n) = (6+(17+12*sqrt(2))^(1-n)+(17-12*sqrt(2))*(17+12*sqrt(2))^n)/4 for n>0.
a(n) = 35*a(n-1)-35*a(n-2)+a(n-3) for n>3.
G.f.: 2*x*(1-30*x+5*x^2) / ((1-x)*(1-34*x+x^2)).
(End)
Extensions
More terms from Ray Chandler, Nov 10 2004