cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098717 Primes p such that 2*p+1 and ((2*p+1)^2 + 1)/2 = p^2 + (p+1)^2 are primes.

Original entry on oeis.org

2, 5, 29, 719, 1229, 1409, 1559, 2039, 2399, 2699, 2939, 3449, 3779, 6269, 6899, 7079, 8069, 9689, 12959, 13619, 14009, 14249, 14879, 19559, 20369, 20759, 21089, 22079, 22469, 23459, 26879, 28559, 30269, 31799, 32009, 32789, 33179, 33569, 38639, 39989, 40949, 41399, 41969, 42359, 45569, 46349, 47279, 49499, 49919, 53309, 54959, 55469
Offset: 1

Views

Author

Robin Garcia, Sep 29 2004

Keywords

Comments

It is easy to prove that all the terms except the first two must satisfy a(n) mod 10 = 9.

Examples

			a(3) = 29 = p and 2*p + 1 = 59 and (59^2 + 1)/2 = 29^2 + 30^2 = 1741 are prime.
		

Crossrefs

Cf. A082612.

Programs

  • Mathematica
    Flatten[Append[{2, 5}, Select[Sort[Range[29, 30000000, 30], Range[49, 30000000, 30]], PrimeQ[ # ]&&PrimeQ[2 # + 1] && PrimeQ[1 + 2 # + 2 #^2] &]]] (Zak Seidov)
    f1[n_]:=(n+1)^2-n^2;f2[n_]:=(n+1)^2+n^2; Select[Prime[Range[8! ]],PrimeQ[f1[ # ]]&&PrimeQ[f2[ # ]]&] (* Vladimir Joseph Stephan Orlovsky, Feb 25 2010 *)

Extensions

More terms from Zak Seidov, Feb 16 2005