A098752 a(1) = 1 and a(n+1) is the least number > a(n) that begins with the last digit of a(n) and doesn't end with 0.
1, 11, 12, 21, 101, 102, 201, 1001, 1002, 2001, 10001, 10002, 20001, 100001, 100002, 200001, 1000001, 1000002, 2000001, 10000001, 10000002, 20000001, 100000001, 100000002, 200000001, 1000000001, 1000000002, 2000000001, 10000000001
Offset: 1
Formula
For n == 0 (mod 3), a(n) = 10^(n/3) + 2; for n == 1 (mod 3), n>1, a(n) = 2*10^((n-1)/3) + 1; for n == 2 (mod 3), a(n) = 10^((n+1)/3) + 1. - Sam Alexander, Jan 04 2005
From Chai Wah Wu, Jun 02 2016: (Start)
a(n) = 11*a(n-3) - 10*a(n-6) for n > 7.
G.f.: x*(1 + x + 2*x^2)*(1 + 10*x - 10*x^3 - 10*x^4)/((1 - x)*(1 - 10*x^3)*(1 + x + x^2)). (End)
a(n) = (1-sign((n-1) mod 3))*10^floor(n/3)+10^floor((n+1)/3)-sign(n mod 3)+2, for n > 1. - Wesley Ivan Hurt, Mar 06 2022
Extensions
More terms from Sam Alexander, Jan 04 2005
More terms from David Wasserman, Feb 26 2008
Comments