A144689 A098777 mod 7.
1, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6, 5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, 3, 6, 1, 1, 1, 1, 2, 4, 3, 3, 3, 3, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6, 5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, 3, 6, 1, 1, 1, 1, 2, 4, 3, 3, 3, 3, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6, 5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, 3, 6, 1, 1
Offset: 0
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- R. Bacher and P. Flajolet, Pseudo-factorials, Elliptic Functions and Continued Fractions, arXiv:0901.1379 [math.CA], 2009.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0,1,(-1)^n*add(binomial(n-1,k)*a(k)*a(n-1-k),k=0..n-1)) end: seq(modp(a(n),7), n=0..100); # Muniru A Asiru, Jul 29 2018
-
Mathematica
b[0] = 1; b[n_] := b[n] = (-1)^n Sum[Binomial[n-1, k] b[k] b[n-k-1], {k, 0, n-1}]; a[n_] := Mod[b[n], 7]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 29 2018 *)
Formula
For n >= 0 has period 36.
From Chai Wah Wu, Jun 09 2016: (Start)
a(n) = a(n-1) - a(n-18) + a(n-19) for n > 19.
G.f.: (1 + 5*x - x^2 - 3*x^3 + 2*x^7 - 3*x^8 + 5*x^9 - x^13 - 2*x^14 + x^15 + x^18 + 2*x^19)/(1 - x + x^18 - x^19). (End)
Comments