cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144689 A098777 mod 7.

Original entry on oeis.org

1, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6, 5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, 3, 6, 1, 1, 1, 1, 2, 4, 3, 3, 3, 3, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6, 5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, 3, 6, 1, 1, 1, 1, 2, 4, 3, 3, 3, 3, 6, 5, 2, 2, 2, 2, 4, 1, 6, 6, 6, 6, 5, 3, 4, 4, 4, 4, 1, 2, 5, 5, 5, 5, 3, 6, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 08 2009

Keywords

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0,1,(-1)^n*add(binomial(n-1,k)*a(k)*a(n-1-k),k=0..n-1)) end: seq(modp(a(n),7), n=0..100); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    b[0] = 1; b[n_] := b[n] = (-1)^n Sum[Binomial[n-1, k] b[k] b[n-k-1], {k, 0, n-1}];
    a[n_] := Mod[b[n], 7]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 29 2018 *)

Formula

For n >= 0 has period 36.
From Chai Wah Wu, Jun 09 2016: (Start)
a(n) = a(n-1) - a(n-18) + a(n-19) for n > 19.
G.f.: (1 + 5*x - x^2 - 3*x^3 + 2*x^7 - 3*x^8 + 5*x^9 - x^13 - 2*x^14 + x^15 + x^18 + 2*x^19)/(1 - x + x^18 - x^19). (End)

A144750 A098777 mod 9.

Original entry on oeis.org

1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 08 2009

Keywords

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0,1,(-1)^n*add(binomial(n-1,k)*a(k)*a(n-1-k),k=0..n-1)) end: seq(modp(a(n),9), n=0..100); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    b[0] = 1;
    b[n_] := b[n] = (-1)^n Sum[Binomial[n-1, k] b[k] b[n-k-1], {k, 0, n-1}];
    a[n_] := Mod[b[n], 9]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 29 2018 *)

Formula

From Chai Wah Wu, Nov 30 2018: (Start)
a(n) = a(n-2) + a(n-3) - a(n-5) - a(n-6) + a(n-8) for n > 7 (conjectured).
G.f.: (-8*x^7 - 4*x^6 + 3*x^5 + 8*x^4 + 7*x^3 - 6*x^2 - 8*x - 1)/((x - 1)*(x + 1)*(x^6 - x^3 + 1)) (conjectured). (End)

A235166 E.g.f. satisfies: A'(x) = A(x)^2/A(-x)^2, with A(0)=1.

Original entry on oeis.org

1, 1, 4, 16, 88, 640, 5440, 54400, 620800, 7966720, 113651200, 1783091200, 30519808000, 565916876800, 11300689100800, 241781039104000, 5517822373888000, 133795711025152000, 3435107208822784000, 93093522064998400000, 2655675672405606400000, 79546285618254315520000
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2014

Keywords

Comments

See comments by Roland Bacher in A098777 which imply that this sequence is related to elliptic functions.
Compare to: G'(x) = G(x)^2/G(-x) dx, which holds when G(x) = 1/(cos(x) - sin(x)), the e.g.f. of A001586 (Springer numbers).

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 16*x^3/3! + 88*x^4/4! + 640*x^5/5! +...
Related series.
A(x)^2 = 1 + 2*x + 10*x^2/2! + 56*x^3/3! + 400*x^4/4! + 3440*x^5/5! +...
1/A(x) = 1 - x - 2*x^2/2! + 2*x^3/3! + 16*x^4/4! - 40*x^5/5! - 320*x^6/6! +...+ A098777(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    kmax = 21;
    A[x_] = 1+x; Do[A[x_] = 1+Integrate[A[x]^2/A[-x]^2+O[x]^k, x] // Normal, {k, 1, kmax}];
    CoefficientList[A[x], x] Range[0, kmax]! (* Jean-François Alcover, Jul 29 2018 *)
  • PARI
    {a(n)=local(A=1+x); for(i=0, n, A=1+intformal(A^2/subst(A, x,-x +x*O(x^n))^2 +x*O(x^n) )); n!*polcoeff(A, n)}
    for(n=0,21,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1); A=1/(1-3*serreverse(intformal(1/(1-9*x^2 +x*O(x^n))^(2/3))))^(1/3); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: 1/(1 - 3*Series_Reversion( Integral 1/(1 - 9*x^2)^(2/3) dx ))^(1/3).
E.g.f.: 1/F(x), where F(x) equals the e.g.f. of A098777 (pseudo-factorials).
a(n) ~ 2^(-2/3) * n! * (9*GAMMA(2/3)^3/(2^(2/3)*Pi^2))^(n+1). - Vaclav Kotesovec, Feb 24 2014
Showing 1-3 of 3 results.