A098871 Sums of distinct powers of 4 plus 1.
1, 2, 5, 6, 17, 18, 21, 22, 65, 66, 69, 70, 81, 82, 85, 86, 257, 258, 261, 262, 273, 274, 277, 278, 321, 322, 325, 326, 337, 338, 341, 342, 1025, 1026, 1029, 1030, 1041, 1042, 1045, 1046, 1089, 1090, 1093, 1094, 1105, 1106, 1109, 1110, 1281, 1282, 1285, 1286
Offset: 0
Keywords
Links
- Lukasz Merta, Composition inverses of the variations of the Baum-Sweet sequence, arXiv:1803.00292 [math.NT], 2018. See u(n) p. 11.
Crossrefs
Cf. A003278.
Programs
-
Maple
a:= proc(n) local m, r, b; m, r, b:= n, 1, 1; while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*4 od; r end: seq(a(n), n=0..100); # Alois P. Heinz, Aug 17 2013
-
Mathematica
(* first do *) Needs["DiscreteMath`Combinatorica`"]; (* then *) Take[ Sort[ Plus @@@ Subsets[ Table[4^n, {n, 0, 5}]]] + 1, 50] (* Robert G. Wilson v, Oct 23 2004 *) Total/@Subsets[4^Range[0,5],10]+1//Union (* Harvey P. Dale, May 03 2019 *)
Formula
a(n) = A000695(n) + 1. - Franklin T. Adams-Watters, Aug 17 2013
Extensions
More terms from Robert G. Wilson v, Oct 23 2004