cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A147645 Number of distinct Mersenne primes dividing n.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0
Offset: 1

Views

Author

Omar E. Pol, Nov 09 2008

Keywords

Comments

a(n) = m first occurs at n = A098918(m). - Robert Israel, Feb 03 2020

Examples

			a(21)=2 because 1, 3, 7 and 21 are divisors of 21. Then 21 has two divisors that are Mersenne primes (A000668): 3 and 7.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    for i from 1 do
    m:= numtheory:-mersenne([i]);
    if m > N then break fi;
    for j from m by m to N do
        V[j]:= V[j]+1
    od od:
    convert(V,list); # Robert Israel, Feb 03 2020
  • PARI
    A147645(n) = { my(m=3,s=0); while(m<=n, s += (isprime(m)*!(n%m)); m += (m+1)); (s); }; \\ Antti Karttunen, May 12 2022

Formula

From Antti Karttunen, May 12 2022: (Start)
a(n) = A154402(n) - A353786(n)
a(n) = a(2*n) = a(A000265(n)).
a(n) <= A331410(n). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A173898 = 0.516454... . - Amiram Eldar, Dec 31 2023

A105667 1/(2k)-th of area of primitive Pythagorean triangle with hypotenuse 5^(2^n), where k is the product of all Mersenne primes not exceeding 2^(n+2) - 1.

Original entry on oeis.org

1, 2, 4216, 44834576
Offset: 0

Views

Author

Lekraj Beedassy, May 04 2005

Keywords

Crossrefs

Showing 1-2 of 2 results.