A098925 Distribution of the number of ways for a child to climb a staircase having r steps (one step or two steps at a time).
1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 4, 1, 1, 6, 5, 1, 4, 10, 6, 1, 1, 10, 15, 7, 1, 5, 20, 21, 8, 1, 1, 15, 35, 28, 9, 1, 6, 35, 56, 36, 10, 1, 1, 21, 70, 84, 45, 11, 1, 7, 56, 126, 120, 55, 12, 1, 1, 28, 126, 210, 165, 66, 13, 1, 8, 84, 252, 330, 220, 78, 14, 1, 1, 36, 210, 462, 495, 286, 91
Offset: 0
Examples
There are 13 ways for the child to climb a staircase with six steps since the partitions of 6 into 1's and 2's are 222, 2211, 21111 and 111111; and these can be permuted in 1 + 6 + 5 + 1 = 13 ways. The general cases can be readily shown by displacing Pascal's Triangle (A007318) as follows: 1 ..1 ..1..1 .....2..1 .....1..3..1 ........3..4..1 ........1..6..5..1 Triangle (0, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins: 1 0, 1 0, 1, 1 0, 0, 2, 1 0, 0, 1, 3, 1 0, 0, 0, 3, 4, 1 0, 0, 0, 1, 6, 5, 1 - _Philippe Deléham_, Feb 08 2012
References
- Massimo Nocentini, "An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation", PhD Thesis, University of Florence, 2019. See Ex. 14.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5775
- H.-H. Chern, H.-K. Hwang, T.-H. Tsai, Random unfriendly seating arrangement in a dining table, arXiv preprint arXiv:1406.0614 [math.PR], 2014.
- T. Copeland, Addendum to Elliptic Lie Triad
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
Crossrefs
Programs
-
Maple
T:=(n,k)->sum((-1)^(n+i)*binomial(n,i)*binomial(i+k+1,2*k+1),i=0..n): 1,1,seq(seq(T(n,k),k=floor(n/2)..n),n=1..16); # Emeric Deutsch, Mar 29 2005
-
Mathematica
nn = 15; f[list_] := Select[list, # > 0 &]; Map[f, CoefficientList[Series[1/(1 - y x - y x^2), {x, 0, nn}], {x, y}]] // Flatten (* Geoffrey Critzer, Dec 27 2011*) Table[ Select[ CoefficientList[ Fibonacci[n, x], x], 0 < # &], {n, 0, 17}] // Flatten (* Robert G. Wilson v, May 03 2017 *)
Formula
T(n,k) = abs(A092865(n,k)).
O.g.f.: 1/(1-y*x-y*x^2). - Geoffrey Critzer, Dec 27 2011.
Extensions
More terms from Emeric Deutsch, Mar 29 2005
Comments