A098928 Number of cubes that can be formed from the points of a cubical grid of n X n X n points.
0, 1, 9, 36, 100, 229, 473, 910, 1648, 2795, 4469, 6818, 10032, 14315, 19907, 27190, 36502, 48233, 62803, 80736, 102550, 128847, 160271, 197516, 241314, 292737, 352591, 421764, 501204, 592257, 696281, 814450, 948112, 1098607, 1267367
Offset: 1
Keywords
Examples
For n = 3 there are 8 cubes of volume 1 and 1 cube of volume 8; thus a(3)=9. - _José María Grau Ribas_, Mar 15 2014 a(6)=229 because we can place 15^2 cubes in a 6 X 6 X 6 cubical grid with their edges parallel to the faces of the grid, plus 4 cubes of edge 3 with a vertex in each face of the lattice and the other two vertices on a diagonal.
Links
- Baitian Li, Table of n, a(n) for n = 1..10000 (terms 1..101 from E. J. Ionascu and R. A. Obando)
- E. J. Ionascu and R. A. Obando, Counting all cubes in {0,1,...,n}^3, arXiv:1003.4569 [math.NT], 2010.
- Eugen J. Ionascu and Andrei Markov, Platonic solids in Z^3, Journal of Number Theory, Volume 131, Issue 1, January 2011, Pages 138-145.
- Eugen J. Ionascu and R. A. Obando, Cubes in {0,1,...,N}^3, INTEGERS, 12A (2012), #A9. - From _N. J. A. Sloane_, Feb 05 2013
- I. Larrosa, SMSU Problem Corner.
- Baitian Li, C++ program for A098928
Crossrefs
Programs
-
Mathematica
Needs["Quaternions`"]; (* Initialize variables *) R = 20; NN = 1010; (* Quaternion operations *) test[q_Quaternion] := Module[{unit, res, a, b, c, u, v, w, p}, If[Round[Norm[q]] > R, Return[]]; If[q == Quaternion[0, 0, 0, 0], Return[]]; unit = Quaternion[0, 1, 0, 0]; res = q ** unit ** Conjugate[q]; a = Abs[res[[2]]] + Abs[res[[3]]] + Abs[res[[4]]]; unit = Quaternion[0, 0, 1, 0]; res = q ** unit ** Conjugate[q]; b = Abs[res[[2]]] + Abs[res[[3]]] + Abs[res[[4]]]; unit = Quaternion[0, 0, 0, 1]; res = q ** unit ** Conjugate[q]; c = Abs[res[[2]]] + Abs[res[[3]]] + Abs[res[[4]]]; For[i = 1, i <= (R - 1)/Max[a, b, c], i++, If[SquareFreeQ[i], {u = a*i; v = b*i; w = c*i; p = Max[u, v, w] + 1; coe[[p + 1, 4]] += (1); coe[[p + 1, 3]] -= (u + v + w); coe[[p + 1, 2]] += (u*v + v*w + w*u); coe[[p + 1, 1]] -= (u*v*w)}]]]; (* Set up coefficient matrix *) coe = ConstantArray[0, {NN, 4}]; (* Loop through quaternions *) rt = Ceiling[Sqrt[R]] + 1; For[s = -rt, s <= rt, s++, For[x = -rt, x <= rt, x++, For[y = -rt, y <= rt, y++, For[z = -rt, z <= rt, z++, test[Quaternion[s, x, y, z]]; test[Quaternion[s + 0.5, x + 0.5, y + 0.5, z + 0.5]];]]]]; newCoe = coe; newCoe[[2 ;; ;; 2]] = coe[[2 ;; ;; 2]]/2; (* Calculate and output results *) For[i = 2, i <= R + 1, i++, ans = 0; For[j = 4, j >= 1, j--, newCoe[[i, j]] += newCoe[[i - 1, j]]; ans = ans*(i - 1) + newCoe[[i, j]]; ]; Print[i - 1, " ", ans/24];]; (* Haomin Yang, Aug 29 2023 *)
Extensions
Edited by Ray Chandler, Apr 05 2010
Further edited by N. J. A. Sloane, Mar 31 2016
Comments