cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098931 a(0) = 1, a(n) = 1 + 2*3 + 4*5 + 6*7 + ... + (2n)*(2n+1) for n > 0.

Original entry on oeis.org

1, 7, 27, 69, 141, 251, 407, 617, 889, 1231, 1651, 2157, 2757, 3459, 4271, 5201, 6257, 7447, 8779, 10261, 11901, 13707, 15687, 17849, 20201, 22751, 25507, 28477, 31669, 35091, 38751, 42657, 46817, 51239, 55931, 60901, 66157, 71707, 77559, 83721
Offset: 0

Views

Author

Miklos Kristof, Oct 20 2004

Keywords

Comments

If a(n) = a0, a1, a2, a3, ... then Sum(a(n))= a0, a0+a1, a0+a1+a2, a0+a1+a2+a3, ...

Examples

			a(0) = 1;
a(1) = 1 + 2*3 = 7;
a(2) = 1 + 2*3 + 4*5 = 27, etc.
		

Crossrefs

Cf. A068377.

Programs

Formula

a(n) = 1 + 3*n^2 + n*(5 + 4*n^2)/3.
G.f.: (1 + 3*x + 5*x^2 - x^3)/(1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Jul 28 2015
From Robert Israel, Jul 28 2015: (Start)
E.g.f.: (1+6*x+7*x^2+(4/3)*x^3)*exp(x).
a(n) = 1 + Sum(A068377(i),i=1..n+1). (End)

Extensions

Edited and extended by Robert G. Wilson v, Oct 23 2004