cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098978 Triangle read by rows: T(n,k) is number of Dyck n-paths with k UUDDs, 0 <= k <= n/2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 1, 13, 23, 6, 35, 69, 27, 1, 97, 212, 110, 10, 275, 662, 426, 66, 1, 794, 2091, 1602, 360, 15, 2327, 6661, 5912, 1760, 135, 1, 6905, 21359, 21534, 8022, 945, 21, 20705, 68850, 77685, 34840, 5685, 246, 1, 62642, 222892, 278192, 146092
Offset: 0

Views

Author

David Callan, Oct 24 2004

Keywords

Comments

T(n,k) is the number of Łukasiewicz paths of length n having k peaks. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1). Example: T(3,1)=3 because we have HUD, UDH and U(2)DD, where H=(1,0), U(1,1), U(2)=(1,2) and D=(1,-1). (see R. P. Stanley reference). - Emeric Deutsch, Jan 06 2005

Examples

			Table begins
\ k  0,   1,   2, ...
n
0 |  1;
1 |  1;
2 |  1,   1;
3 |  2,   3;
4 |  5,   8,   1;
5 | 13,  23,   6;
6 | 35,  69,  27,  1;
7 | 97, 212, 110, 10;
8 |275, 662, 426, 66, 1;
T(3,1) = 3 because each of UUUDDD, UDUUDD, UUDDUD has one UUDD.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps. - Emeric Deutsch, Jan 06 2005

Crossrefs

Column k=0 is A025242 (apart from first term).
Cf. A243752.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 3, 3, 2][t])
          +b(x-1, y-1, [1, 1, 4, 1][t])*`if`(t=4, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    T[n_, k_] := Binomial[n-k, k] Binomial[2n-3k, n-k-1] HypergeometricPFQ[{k -n/2-1/2, k-n/2, k-n/2, k-n/2+1/2}, {k-2n/3, k-2n/3+1/3, k-2n/3+2/3}, 16/27]/(n-k); T[0, 0] = 1; Flatten[Table[T[n, k], {n, 0, 15}, {k, 0, n/2}]] (* Jean-François Alcover, Dec 21 2016, after 2nd formula *)

Formula

G.f.: (1 + z^2 - t*z^2 - (-4*z + (-1 - z^2 + t*z^2)^2)^(1/2))/(2*z) = Sum_{n>=0, 0<=k<=n/2} T(n, k)z^n*t^k and it satisfies G = 1 + G^2*z + G*(-z^2 + t*z^2).
T(n,k) = Sum_{j=0..floor(n/2)-k} (-1)^j * binomial(n-(j+k), j+k) * binomial(2n-3(j+k), n-(j+k)-1) * binomial(j+k, k)/(n-(j+k)). - I. Tasoulas (jtas(AT)unipi.gr), Feb 19 2006