A098983 Number of ways of writing n as a sum of a prime and a squarefree number.
0, 0, 0, 1, 2, 2, 2, 2, 4, 3, 3, 1, 4, 4, 4, 3, 5, 4, 6, 4, 6, 4, 6, 3, 9, 5, 7, 3, 7, 4, 7, 4, 8, 7, 9, 4, 10, 6, 8, 6, 10, 6, 11, 7, 12, 8, 11, 5, 13, 8, 11, 6, 11, 8, 13, 6, 10, 7, 13, 6, 16, 7, 13, 8, 16, 7, 14, 7, 13, 10, 15, 7, 18, 10, 17, 10, 18, 9, 17, 8, 17, 12, 17, 8, 21, 12, 15, 9, 18, 13
Offset: 0
Examples
a(8) = 4: 8=2+6=3+5=5+3=7+1.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Adrian Dudek, On the Sum of a Prime and a Square-free Number, arXiv:1410.7459 [math.NT], 2014.
- T. Estermann, On the representations of a number as the sum of a prime and a quadratfrei number, J. London Math. Soc., S1-6(3):219, 1931.
- Forrest J. Francis and Ethan S. Lee, Additive Representations of Natural Numbers, #A14 INTEGERS 22 (2022).
- Shehzad Hathi and Daniel R. Johnston, On the sum of a prime and a square-free number with divisibility conditions, Journal of Number Theory Volume 256, March 2024, pp. 354-372. arXiv:2109.11883 [math.NT]
- A. Page, On the Number of Primes in an Arithmetic Progression, Proc London Math Soc (1935) s2-39 (1): 116-141.
- A. Walfisz, Zur additiven Zahlentheorie II, Math. Z. 40 (1936), 592-607.
Programs
-
Haskell
a098983 n = sum $ map (a008966 . (n -)) $ takeWhile (< n) a000040_list -- Reinhard Zumkeller, Sep 14 2011
-
Mathematica
m = 90; sf = Total[ x^Select[Range[m], SquareFreeQ] ]; pp = Sum[x^Prime[n], {n, 1, PrimePi @ Exponent[sf[[-1]], x]}]; CoefficientList[Series[pp * sf, {x, 0, m-1}], x] (* Jean-François Alcover, Jul 20 2011 *)
-
PARI
a(n)=my(s);forprime(p=2,n,s+=issquarefree(n-p));s \\ Charles R Greathouse IV, Jun 20 2013
-
PARI
a(n)=my(s);forsquarefree(k=1,n-2,if(isprime(n-k[1]),s++));s \\ Charles R Greathouse IV, Dec 23 2020
Formula
G.f.: (x^2+x^3+x^5+x^7+x^11+x^13+x^17+x^19+...)(x+x^2+x^3+x^5+x^6+x^7+x^10+x^11+x^13+x^14+x^15+x^17+x^19+...).
Dudek shows that a(n) > 0 for n > 2. - Charles R Greathouse IV, Dec 23 2020
Comments