cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099011 Pell pseudoprimes: odd composite numbers n such that P(n)-Kronecker(2,n) is divisible by n.

Original entry on oeis.org

169, 385, 741, 961, 1121, 2001, 3827, 4879, 5719, 6215, 6265, 6441, 6479, 6601, 7055, 7801, 8119, 9799, 10945, 11395, 13067, 13079, 13601, 15841, 18241, 19097, 20833, 20951, 24727, 27839, 27971, 29183, 29953, 31417, 31535, 34561, 35459, 37345
Offset: 1

Views

Author

Jack Brennen, Nov 13 2004

Keywords

Comments

Here P(n) are the Pell numbers (A000129), defined by P(0)=0, P(1)=1, P(x) = 2*P(x-1) + P(x-2) and Kronecker(2,n) is equal to 1 if n is congruent to +-1 mod 8 and equal to -1 if n is congruent to +-3 mod 8.

Examples

			169 is a Pell pseudoprime because P(169)-Kronecker(2,169) is divisible by 169.
		

Crossrefs

Cf. A000129.

Programs

  • Mathematica
    pell[0] = 0; pell[1] = 1; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellpspQ[n_] := OddQ[n] && CompositeQ[n] && Divisible[pell[n] - JacobiSymbol[2, n], n]; Select[Range[40000], pellpspQ] (* Amiram Eldar, Nov 22 2019 *)
  • PARI
    genit(nterms=100)={my(arr=List(),q,z);forcomposite(n=9,+oo,if(n%2==0,next);q=([2,1;1,0]^n)[2,1];z=(q-kronecker(2,n))%n;if(z==0,listput(arr,n));if(#arr>=nterms,break));arr} \\ Bill McEachen, Jun 24 2023 (incorporates A000129 code of Greathouse)
  • Perl
    use Math::Prime::Util qw/:all/;
    my($U,$V);
    foroddcomposites {
      ($U,$V) = lucas_sequence($, 2, -1, $);
      $U = ($U - kronecker(2,$)) % $;
      print "$_\n" if $U == 0;
    } 1e11; # Dana Jacobsen, Sep 13 2014