A099011 Pell pseudoprimes: odd composite numbers n such that P(n)-Kronecker(2,n) is divisible by n.
169, 385, 741, 961, 1121, 2001, 3827, 4879, 5719, 6215, 6265, 6441, 6479, 6601, 7055, 7801, 8119, 9799, 10945, 11395, 13067, 13079, 13601, 15841, 18241, 19097, 20833, 20951, 24727, 27839, 27971, 29183, 29953, 31417, 31535, 34561, 35459, 37345
Offset: 1
Keywords
Examples
169 is a Pell pseudoprime because P(169)-Kronecker(2,169) is divisible by 169.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (from Dana Jacobsen's site, terms 1..200 from Ralf Stephan)
- Antonio J. Di Scala, Nadir Murru, and Carlo Sanna, Lucas pseudoprimes and the Pell conic, arXiv:2001.00353 [math.NT], 2020.
- Dana Jacobsen, Pseudoprime Statistics, Tables, and Data (includes terms to 5e12)
Crossrefs
Cf. A000129.
Programs
-
Mathematica
pell[0] = 0; pell[1] = 1; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellpspQ[n_] := OddQ[n] && CompositeQ[n] && Divisible[pell[n] - JacobiSymbol[2, n], n]; Select[Range[40000], pellpspQ] (* Amiram Eldar, Nov 22 2019 *)
-
PARI
genit(nterms=100)={my(arr=List(),q,z);forcomposite(n=9,+oo,if(n%2==0,next);q=([2,1;1,0]^n)[2,1];z=(q-kronecker(2,n))%n;if(z==0,listput(arr,n));if(#arr>=nterms,break));arr} \\ Bill McEachen, Jun 24 2023 (incorporates A000129 code of Greathouse)
-
Perl
use Math::Prime::Util qw/:all/; my($U,$V); foroddcomposites { ($U,$V) = lucas_sequence($, 2, -1, $); $U = ($U - kronecker(2,$)) % $; print "$_\n" if $U == 0; } 1e11; # Dana Jacobsen, Sep 13 2014
Comments