A099035 a(n) = (n+1)*2^(n-1) - 1.
1, 5, 15, 39, 95, 223, 511, 1151, 2559, 5631, 12287, 26623, 57343, 122879, 262143, 557055, 1179647, 2490367, 5242879, 11010047, 23068671, 48234495, 100663295, 209715199, 436207615, 905969663, 1879048191, 3892314111, 8053063679
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-8,4).
Programs
-
Magma
[(n+1)*2^(n-1) -1: n in [1..30]]; // G. C. Greubel, Dec 31 2017
-
Mathematica
Table[(n + 1)*2^(n - 1) - 1, {n,1,30}] (* G. C. Greubel, Dec 31 2017 *) LinearRecurrence[{5,-8,4},{1,5,15},30] (* Harvey P. Dale, Dec 28 2022 *)
-
PARI
a(n)=(n+1)*2^(n-1)-1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = A057711(n+1) - 1 = A058966(n+3)/2 = (A087323(n)-1)/2 = (A074494(n+1)-2)/3 = (A003261(n+1)-3)/4 = A036289(n+1)/4 - 1, n>0.
a(n) = A131056(n+1) - 2. - Juri-Stepan Gerasimov, Oct 02 2011
From Colin Barker, Mar 23 2012: (Start)
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3).
G.f.: x*(1-2*x^2)/((1-x)*(1-2*x)^2). (End)
E.g.f.: ((2*x+1)*exp(2*x) - 2*exp(x) + 1)/2. - G. C. Greubel, Dec 31 2017
Comments