A099039 Riordan array (1,c(-x)), where c(x) = g.f. of Catalan numbers.
1, 0, 1, 0, -1, 1, 0, 2, -2, 1, 0, -5, 5, -3, 1, 0, 14, -14, 9, -4, 1, 0, -42, 42, -28, 14, -5, 1, 0, 132, -132, 90, -48, 20, -6, 1, 0, -429, 429, -297, 165, -75, 27, -7, 1, 0, 1430, -1430, 1001, -572, 275, -110, 35, -8, 1, 0, -4862, 4862, -3432, 2002, -1001, 429, -154, 44, -9, 1, 0, 16796, -16796, 11934, -7072, 3640, -1638
Offset: 0
Examples
Rows begin {1}, {0,1}, {0,-1,1}, {0,2,-2,1}, {0,-5,5,-3,1}, ... Triangle begins 1; 0, 1; 0, -1, 1; 0, 2, -2, 1; 0, -5, 5, -3, 1; 0, 14, -14, 9, -4, 1; 0, -42, 42, -28, 14, -5, 1; 0, 132, -132, 90, -48, 20, -6, 1; 0, -429, 429, -297, 165, -75, 27, -7, 1; Production matrix is 0, 1, 0, -1, 1, 0, 1, -1, 1, 0, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, 0, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, 0, -1, 1, -1, 1, -1, 1, -1, 1, 0, 1, -1, 1, -1, 1, -1, 1, -1, 1
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021. See (2.10) p. 6.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
- D. Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
- L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= If[n == 0 && k == 0, 1, If[n == 0 && k > 0, 0, (-1)^(n + k)*Binomial[2*n - k - 1, n - k]*k/n]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *)
-
PARI
{T(n,k) = if(n == 0 && k == 0, 1, if(n == 0 && k > 0, 0, (-1)^(n + k)*binomial(2*n - k - 1, n - k)*k/n))}; for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 31 2017
Formula
T(n, k) = (-1)^(n+k)*binomial(2*n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0. - Philippe Deléham, May 31 2005
Comments