A099042 Number of badly sieved (A066680) divisors of n.
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 2, 3, 2, 1, 4, 1, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 5, 1, 2, 3, 2, 2, 3, 1, 2, 2, 4, 1, 5, 1, 2, 3, 2, 2, 3, 1, 4, 2, 2, 1, 4, 2, 2, 2, 3, 1, 6, 2, 2, 2, 2, 2, 4, 1, 3, 2, 3, 1, 3, 1, 3, 4
Offset: 1
Keywords
Examples
a(24) = #{2,3,8,12} = 4; A099043(24) = 2+3+8+12 = 25; a(25) = #{5} = 1; A099043(25) = 5; a(26) = #{2,13} = 2; A099043(26) = 2+13 = 15.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
b[n_] := b[n] = If[n == 1, 0, Product[If[n > d^2, 1, 1 - b[d]], {d, Select[Range[n - 1], Mod[n, #] == 0&]}]]; (* b is A099104 *) a[n_] := Sum[b[d], {d, Divisors[n]}]; Array[a, 105] (* Jean-François Alcover, Dec 06 2021 *)
-
PARI
A099104(n) = if(1==n,0,my(m=1); fordiv(n,d,if((d
=n),m *= (1-A099104(d)))); (m)); A099042(n) = sumdiv(n,d,A099104(d)); \\ Antti Karttunen, Jul 02 2018
Formula
a(n) = Sum_{d|n} A099104(d). - Antti Karttunen, Jul 02 2018
Comments