A099079 Numbers n such that phi(n).phi(n-1). ... .phi(2).phi(1) is prime (dots between numbers mean concatenation).
2, 3, 9, 28, 30, 31, 51, 127, 208
Offset: 1
Examples
9 is in the sequence because phi(9).phi(8).phi(7).phi(6).phi(5).phi(4).phi(3).phi(2).phi(1) = 646242211 is prime.
Links
- Carlos Rivera, Puzzle 8. Primes by Listing, The Prime Puzzles & Problems connection.
- Eric Weisstein's World of Mathematics, Integer Sequence Primes
Programs
-
Mathematica
Module[{nn=210,eph},eph=EulerPhi[Range[nn]];Position[Table[FromDigits[ Flatten[ IntegerDigits[Reverse[Take[eph,n]]]]],{n,nn}],?PrimeQ]]// Flatten (* _Harvey P. Dale, Apr 21 2020 *) ParallelTable[If[PrimeQ[ToExpression[StringJoin[ToString[#]&/@Reverse[Table[EulerPhi[k],{k,1,n}]]]]],n,Nothing],{n,1,10^4}]//.{}->Nothing (* J.W.L. (Jan) Eerland, Aug 15 2022 *)
Comments