A099077
Numbers k such that pi(1).pi(2) ... pi(k-1).pi(k) is prime (dot between numbers means concatenation).
Original entry on oeis.org
5, 25, 2232, 4560
Offset: 1
5 is in the sequence because pi(1).pi(2).pi(3).pi(4).pi(5)=1223 is prime.
A099078
Numbers k such that pi(k).pi(k-1) ... pi(3).pi(2) is prime (dot between numbers means concatenation).
Original entry on oeis.org
5, 22, 48, 317, 734, 5235, 12377
Offset: 1
5 is in the sequence because pi(5).pi(4).pi(3).pi(2) = 3221 is prime.
-
r:= 1: v:= 1: Res:= NULL:
for k from 3 to 6000 do
if isprime(k) then r:= r+1 fi;
v:= v + r*10^(1+ilog10(v));
if isprime(v) then Res:= Res, k fi
od:
Res; # Robert Israel, Nov 20 2018
-
s = ""; Do[s = ToString[PrimePi[n]] <> s; k = ToExpression[s]; If[PrimeQ[k], Print[n]], {n, 2, 5235}] (* Ryan Propper, Aug 30 2005 *)
A099080
Numbers k such that sigma(k).sigma(k-1) ... sigma(2).sigma(1) is prime (dot between numbers means concatenation).
Original entry on oeis.org
3 is in the sequence because sigma(3).sigma(2).sigma(1) = 431 is prime.
-
Module[{nn=110,d},d=DivisorSigma[1,Range[nn]];Select[Range[nn], PrimeQ[ FromDigits[ Flatten[IntegerDigits/@Reverse[Take[d,#]]]]]&]] (* Harvey P. Dale, Jul 25 2016 *)
-
s="1";for(n=2,1e3,s=Str(sigma(n),s);if(ispseudoprime(eval(s)), print1(n", "))) \\ Charles R Greathouse IV, Nov 05 2013
Showing 1-3 of 3 results.
Comments