A099077
Numbers k such that pi(1).pi(2) ... pi(k-1).pi(k) is prime (dot between numbers means concatenation).
Original entry on oeis.org
5, 25, 2232, 4560
Offset: 1
5 is in the sequence because pi(1).pi(2).pi(3).pi(4).pi(5)=1223 is prime.
A099079
Numbers n such that phi(n).phi(n-1). ... .phi(2).phi(1) is prime (dots between numbers mean concatenation).
Original entry on oeis.org
2, 3, 9, 28, 30, 31, 51, 127, 208
Offset: 1
9 is in the sequence because phi(9).phi(8).phi(7).phi(6).phi(5).phi(4).phi(3).phi(2).phi(1) = 646242211 is prime.
-
Module[{nn=210,eph},eph=EulerPhi[Range[nn]];Position[Table[FromDigits[ Flatten[ IntegerDigits[Reverse[Take[eph,n]]]]],{n,nn}],?PrimeQ]]// Flatten (* _Harvey P. Dale, Apr 21 2020 *)
ParallelTable[If[PrimeQ[ToExpression[StringJoin[ToString[#]&/@Reverse[Table[EulerPhi[k],{k,1,n}]]]]],n,Nothing],{n,1,10^4}]//.{}->Nothing (* J.W.L. (Jan) Eerland, Aug 15 2022 *)
A099080
Numbers k such that sigma(k).sigma(k-1) ... sigma(2).sigma(1) is prime (dot between numbers means concatenation).
Original entry on oeis.org
3 is in the sequence because sigma(3).sigma(2).sigma(1) = 431 is prime.
-
Module[{nn=110,d},d=DivisorSigma[1,Range[nn]];Select[Range[nn], PrimeQ[ FromDigits[ Flatten[IntegerDigits/@Reverse[Take[d,#]]]]]&]] (* Harvey P. Dale, Jul 25 2016 *)
-
s="1";for(n=2,1e3,s=Str(sigma(n),s);if(ispseudoprime(eval(s)), print1(n", "))) \\ Charles R Greathouse IV, Nov 05 2013
Showing 1-3 of 3 results.
Comments