A099077
Numbers k such that pi(1).pi(2) ... pi(k-1).pi(k) is prime (dot between numbers means concatenation).
Original entry on oeis.org
5, 25, 2232, 4560
Offset: 1
5 is in the sequence because pi(1).pi(2).pi(3).pi(4).pi(5)=1223 is prime.
A099078
Numbers k such that pi(k).pi(k-1) ... pi(3).pi(2) is prime (dot between numbers means concatenation).
Original entry on oeis.org
5, 22, 48, 317, 734, 5235, 12377
Offset: 1
5 is in the sequence because pi(5).pi(4).pi(3).pi(2) = 3221 is prime.
-
r:= 1: v:= 1: Res:= NULL:
for k from 3 to 6000 do
if isprime(k) then r:= r+1 fi;
v:= v + r*10^(1+ilog10(v));
if isprime(v) then Res:= Res, k fi
od:
Res; # Robert Israel, Nov 20 2018
-
s = ""; Do[s = ToString[PrimePi[n]] <> s; k = ToExpression[s]; If[PrimeQ[k], Print[n]], {n, 2, 5235}] (* Ryan Propper, Aug 30 2005 *)
A099079
Numbers n such that phi(n).phi(n-1). ... .phi(2).phi(1) is prime (dots between numbers mean concatenation).
Original entry on oeis.org
2, 3, 9, 28, 30, 31, 51, 127, 208
Offset: 1
9 is in the sequence because phi(9).phi(8).phi(7).phi(6).phi(5).phi(4).phi(3).phi(2).phi(1) = 646242211 is prime.
-
Module[{nn=210,eph},eph=EulerPhi[Range[nn]];Position[Table[FromDigits[ Flatten[ IntegerDigits[Reverse[Take[eph,n]]]]],{n,nn}],?PrimeQ]]// Flatten (* _Harvey P. Dale, Apr 21 2020 *)
ParallelTable[If[PrimeQ[ToExpression[StringJoin[ToString[#]&/@Reverse[Table[EulerPhi[k],{k,1,n}]]]]],n,Nothing],{n,1,10^4}]//.{}->Nothing (* J.W.L. (Jan) Eerland, Aug 15 2022 *)
Showing 1-3 of 3 results.
Comments