cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099140 a(n) = 4^n * T(n,3/2) where T is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 6, 56, 576, 6016, 62976, 659456, 6905856, 72318976, 757334016, 7930904576, 83053510656, 869747654656, 9108115685376, 95381425750016, 998847258034176, 10460064284409856, 109539215284371456, 1147109554861899776
Offset: 0

Views

Author

Paul Barry, Sep 30 2004

Keywords

Comments

In general, r^n * T(n,(r+2)/r) has g.f. (1-(r+2)*x)/(1-2*(r+2)*x + r^2*x^2), e.g.f. exp((r+2)*x)*cosh(2*sqrt(r+1)*x), a(n) = Sum_{k=0..n} (r+1)^k*binomial(2n,2k) and a(n) = (1+sqrt(r+1))^(2n)/2 + (1-sqrt(r+1))^(2n)/2.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{12,-16},{1,6},30] (* Harvey P. Dale, Oct 23 2012 *)
  • PARI
    a(n) = 4^n*polchebyshev(n, 1, 3/2); \\ Michel Marcus, Sep 08 2019

Formula

G.f.: (1-6*x)/(1-12*x+16*x^2);
E.g.f.: exp(6*x)*cosh(2*sqrt(5)*x);
a(n) = 4^n * T(n, 6/4) where T is the Chebyshev polynomial of the first kind;
a(n) = Sum_{k=0..n} 5^k*binomial(2n, 2k);
a(n) = (1+sqrt(5))^(2n)/2 + (1-sqrt(5))^(2n)/2.
a(n) = a(0)=1, a(1)=6, 12*a(n-1) - 16*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009