A099140 a(n) = 4^n * T(n,3/2) where T is the Chebyshev polynomial of the first kind.
1, 6, 56, 576, 6016, 62976, 659456, 6905856, 72318976, 757334016, 7930904576, 83053510656, 869747654656, 9108115685376, 95381425750016, 998847258034176, 10460064284409856, 109539215284371456, 1147109554861899776
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..900
- P. J. Szablowski, On moments of Cantor and related distributions, arXiv preprint arXiv:1403.0386 [math.PR], 2014.
- Index entries for linear recurrences with constant coefficients, signature (12,-16).
Programs
-
Mathematica
LinearRecurrence[{12,-16},{1,6},30] (* Harvey P. Dale, Oct 23 2012 *)
-
PARI
a(n) = 4^n*polchebyshev(n, 1, 3/2); \\ Michel Marcus, Sep 08 2019
Formula
G.f.: (1-6*x)/(1-12*x+16*x^2);
E.g.f.: exp(6*x)*cosh(2*sqrt(5)*x);
a(n) = 4^n * T(n, 6/4) where T is the Chebyshev polynomial of the first kind;
a(n) = Sum_{k=0..n} 5^k*binomial(2n, 2k);
a(n) = (1+sqrt(5))^(2n)/2 + (1-sqrt(5))^(2n)/2.
a(n) = a(0)=1, a(1)=6, 12*a(n-1) - 16*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009
Comments