A099142 a(n) = 6^n * T(n, 4/3) where T is the Chebyshev polynomial of the first kind.
1, 8, 92, 1184, 15632, 207488, 2757056, 36643328, 487039232, 6473467904, 86042074112, 1143628341248, 15200538791936, 202038000386048, 2685388609667072, 35692849740775424, 474411605904392192
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (16,-36).
Programs
-
Mathematica
LinearRecurrence[{16,-36},{1,8},20] (* Harvey P. Dale, Mar 09 2018 *)
-
PARI
a(n) = 6^n*polchebyshev(n, 1, 4/3); \\ Michel Marcus, Sep 08 2019
Formula
G.f.: (1-8*x)/(1-16*x+36*x^2);
E.g.f.: exp(8*x)*cosh(2*sqrt(7)*x).
a(n) = 6^n * T(n, 8/6) where T is the Chebyshev polynomial of the first kind.
a(n) = Sum_{k=0..n} 7^k * binomial(2n, 2k).
a(n) = (1+sqrt(7))^(2*n)/2 + (1-sqrt(7))^(2*n)/2.
a(0)=1, a(1)=8, a(n) = 16*a(n-1) - 36*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009
Comments