A099150 Positive integers k such that f(k)+f(k)=concatenation of k and k, where f(k)=k(k+3)/2 (A000096).
8, 98, 998, 9998, 99998, 999998, 9999998, 99999998, 999999998, 9999999998, 99999999998, 999999999998, 9999999999998, 99999999999998, 999999999999998, 9999999999999998, 99999999999999998, 999999999999999998, 9999999999999999998, 99999999999999999998
Offset: 1
Examples
99998*(99998+3) = 9999899998 (concatenation of 99998 and 99998).
Links
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Programs
-
PARI
for(k=1, 1e9, if(k*(k+3)==eval(Str(k, k)), print1(k", "))) \\ Seiichi Manyama, Aug 31 2019
-
PARI
{a(n) = 10^n-2} \\ Seiichi Manyama, Aug 31 2019
Formula
a(n) = A002283(n) - 1 = 10^n - 2. - Seiichi Manyama, Aug 31 2019
From Chai Wah Wu, Jun 15 2020: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2.
G.f.: x*(10*x + 8)/((x - 1)*(10*x - 1)). (End)
E.g.f.: 1 - 2*exp(x) + exp(10*x). - Stefano Spezia, May 02 2025
Extensions
a(9)-a(20) from Seiichi Manyama, Aug 31 2019
Comments