cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099176 a(n) = 2*a(n-1) + 4*a(n-2) - 4*a(n-3) - 4*a(n-4).

Original entry on oeis.org

1, 1, 4, 8, 24, 60, 168, 448, 1232, 3344, 9152, 24960, 68224, 186304, 509056, 1390592, 3799296, 10379520, 28357632, 77473792, 211662848, 578272256, 1579870208, 4316282880, 11792306176, 32217174016, 88018960384, 240472260608, 656982441984, 1794909388800
Offset: 0

Views

Author

Paul Barry, Oct 02 2004

Keywords

Comments

Form the 6 node graph with matrix A=[1,1,1,1,0,0; 1,1,0,0,1,1; 1,0,0,0,0,0; 1,0,0,0,0,0; 0,1,0,0,0,0; 0,1,0,0,0,0]. Then a(n) counts closed walks of length n at either of the degree 5 vertices.

Crossrefs

Formula

G.f.: (1+x)*(1-2*x)/((1-2x^2)(1-2x-2x^2)).
a(n) = (3+sqrt(3))(1+sqrt(3))^n/12+(3-sqrt(3))(1-sqrt(3))^n/12+2^((n-4)/2)(1+(-1)^n).
a(n) = A002605(n)/2+2^((n-4)/2)(1+(-1)^n).
E.g.f.: (3*cosh(sqrt(2)*x) + exp(x)*(3*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x)))/6. - Stefano Spezia, Jun 07 2025