cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A099218 Decimal expansion of Li_4(1/2).

Original entry on oeis.org

5, 1, 7, 4, 7, 9, 0, 6, 1, 6, 7, 3, 8, 9, 9, 3, 8, 6, 3, 3, 0, 7, 5, 8, 1, 6, 1, 8, 9, 8, 8, 6, 2, 9, 4, 5, 6, 2, 2, 3, 7, 7, 4, 7, 5, 1, 4, 1, 3, 7, 9, 2, 5, 8, 2, 4, 4, 3, 1, 9, 3, 4, 7, 9, 7, 7, 0, 0, 8, 2, 8, 1, 5, 8, 1, 8, 6, 4, 9, 7, 6, 9, 3, 6, 4, 8, 5, 7, 7, 7, 8, 2, 6, 5, 6, 0, 9, 0, 0, 6, 4, 7, 7, 2
Offset: 0

Views

Author

Benoit Cloitre, Oct 06 2004

Keywords

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), Section 1.3.2.

Crossrefs

Programs

Formula

Li_4(1/2)=sum(k>0, 1/2^k/k^4)=0.5174790616738993863...

Extensions

Leading zero removed, formula value corrected by R. J. Mathar, Feb 05 2009

A099219 Decimal expansion of Li_5(1/2).

Original entry on oeis.org

5, 0, 8, 4, 0, 0, 5, 7, 9, 2, 4, 2, 2, 6, 8, 7, 0, 7, 4, 5, 9, 1, 0, 8, 8, 4, 9, 2, 5, 8, 5, 8, 9, 9, 4, 1, 3, 1, 9, 5, 4, 1, 1, 2, 5, 6, 6, 4, 8, 2, 1, 6, 4, 8, 7, 2, 4, 4, 9, 7, 7, 9, 6, 3, 5, 2, 6, 2, 5, 3, 9, 4, 2, 2, 8, 7, 8, 0, 2, 4, 2, 6, 1, 9, 3, 8, 4, 2, 1, 0, 0, 4, 9, 3, 4, 4, 9, 5, 5, 0, 6, 2, 2, 5
Offset: 0

Views

Author

Benoit Cloitre, Oct 06 2004

Keywords

Examples

			0.50840057924...
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch (1996), Section 1.3.2.

Crossrefs

Programs

Formula

Li_5(1/2) = Sum_{k>0} 1/2^k/k^5.

A099220 Decimal expansion of Li_6(1/2).

Original entry on oeis.org

5, 0, 4, 0, 9, 5, 3, 9, 7, 8, 0, 3, 9, 8, 8, 5, 5, 0, 6, 9, 0, 0, 4, 6, 5, 0, 9, 7, 8, 8, 8, 7, 9, 0, 9, 5, 2, 0, 6, 5, 2, 2, 2, 8, 9, 3, 2, 6, 6, 7, 4, 4, 4, 9, 2, 3, 1, 3, 4, 5, 2, 6, 1, 0, 8, 3, 6, 3, 5, 9, 2, 0, 8, 5, 5, 6, 6, 7, 5, 5, 8, 4, 4, 4, 3, 3, 9, 8, 6, 8, 7, 6, 2, 1, 1, 7, 1, 2, 5, 0, 7, 6, 3, 2
Offset: 0

Views

Author

Benoit Cloitre, Oct 06 2004

Keywords

Crossrefs

Programs

Formula

Li_6(1/2)=sum(k>0, 1/2^k/k^6)=0.5040953978...

A099221 Decimal expansion of Li_7(1/2).

Original entry on oeis.org

5, 0, 2, 0, 1, 4, 5, 6, 3, 3, 2, 4, 7, 0, 8, 4, 9, 4, 5, 6, 7, 4, 8, 9, 2, 9, 5, 6, 4, 0, 7, 0, 7, 0, 3, 6, 2, 8, 0, 1, 8, 8, 1, 5, 2, 4, 8, 9, 7, 8, 8, 7, 3, 4, 2, 7, 2, 1, 7, 5, 6, 5, 9, 5, 6, 3, 5, 4, 5, 0, 6, 6, 3, 5, 9, 1, 9, 9, 3, 1, 9, 6, 5, 0, 7, 8, 3, 2, 0, 5, 0, 4, 9, 0, 9, 4, 8, 4, 7, 7, 9, 6, 8, 6
Offset: 0

Views

Author

Benoit Cloitre, Oct 06 2004

Keywords

Crossrefs

Programs

Formula

Li_7(1/2)=sum(k>0, 1/2^k/k^7)=0.50201456332470849456....

Extensions

Formula value corrected and leading zero removed by R. J. Mathar, Feb 05 2009

A099222 Decimal expansion of Li_8(1/2).

Original entry on oeis.org

5, 0, 0, 9, 9, 6, 6, 5, 9, 0, 9, 7, 0, 5, 1, 9, 1, 0, 5, 5, 7, 3, 5, 5, 9, 0, 5, 5, 3, 0, 2, 7, 2, 4, 5, 8, 7, 2, 5, 9, 5, 5, 8, 3, 5, 8, 8, 8, 6, 0, 5, 2, 1, 7, 5, 3, 0, 8, 6, 6, 4, 8, 3, 4, 1, 7, 6, 9, 1, 7, 8, 7, 7, 3, 2, 4, 3, 0, 4, 9, 7, 4, 0, 0, 2, 8, 2, 4, 1, 0, 7, 4, 5, 3, 9, 9, 8, 2, 2, 9, 4, 0, 8, 1
Offset: 0

Views

Author

Benoit Cloitre, Oct 06 2004

Keywords

Crossrefs

Programs

Formula

Li_8(1/2)=sum(k>0, 1/2^k/k^8)=0.500996659...

A099223 Decimal expansion of Li_9(1/2).

Original entry on oeis.org

5, 0, 0, 4, 9, 4, 8, 8, 8, 1, 0, 5, 9, 5, 3, 6, 1, 0, 0, 4, 0, 4, 8, 6, 0, 1, 6, 4, 1, 2, 9, 5, 2, 3, 6, 3, 0, 7, 0, 2, 3, 6, 0, 5, 1, 2, 8, 1, 6, 9, 7, 1, 7, 6, 5, 2, 5, 4, 0, 4, 6, 6, 0, 2, 1, 9, 8, 0, 2, 7, 9, 4, 5, 6, 1, 9, 5, 9, 4, 5, 0, 0, 2, 3, 9, 8, 9, 1, 0, 2, 4, 0, 6, 8, 4, 4, 3, 2, 1, 2, 0, 5, 1, 5
Offset: 0

Views

Author

Benoit Cloitre, Oct 06 2004

Keywords

Crossrefs

Programs

Formula

Li_9(1/2)=sum(k>0, 1/2^k/k^9)=0.5004948881...

A099224 Decimal expansion of Li_{10}(1/2).

Original entry on oeis.org

5, 0, 0, 2, 4, 6, 3, 2, 0, 6, 0, 6, 0, 0, 6, 7, 7, 5, 0, 0, 9, 6, 7, 5, 2, 4, 0, 4, 9, 6, 0, 2, 7, 5, 5, 5, 3, 3, 4, 4, 1, 1, 3, 1, 0, 4, 3, 7, 1, 7, 3, 9, 0, 7, 8, 6, 4, 7, 2, 4, 7, 9, 7, 7, 6, 4, 1, 5, 5, 6, 1, 8, 4, 4, 6, 5, 0, 0, 1, 6, 5, 5, 5, 9, 2, 4, 1, 5, 5, 2, 0, 6, 7, 2, 4, 0, 7, 3, 9, 1, 8, 6, 8, 5
Offset: 0

Views

Author

Benoit Cloitre, Oct 06 2004

Keywords

Crossrefs

Programs

Formula

Li_{10}(1/2)=sum(k>0, 1/2^k/k^10)=0.500246320606006775...

A374644 Decimal expansion of 24*Li_3(1/2), where Li_m(z) is the polylogarithm function.

Original entry on oeis.org

1, 2, 8, 9, 3, 1, 1, 6, 6, 4, 6, 5, 9, 2, 9, 6, 4, 8, 2, 2, 5, 7, 4, 9, 5, 7, 4, 1, 4, 2, 7, 9, 1, 7, 9, 8, 4, 0, 0, 8, 9, 6, 5, 9, 9, 8, 4, 1, 6, 9, 0, 7, 6, 0, 9, 6, 5, 5, 4, 2, 8, 6, 3, 3, 7, 2, 3, 9, 7, 7, 7, 9, 4, 2, 0, 8, 3, 3, 2, 1, 5, 3, 5, 9, 2, 9, 8, 9, 6, 6
Offset: 2

Views

Author

Paolo Xausa, Jul 15 2024

Keywords

Examples

			12.893116646592964822574957414279179840089659984...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[24*PolyLog[3, 1/2], 10, 100]]

Formula

Equals 24*A099217.
Equals 4*log(2)^3 + 21*zeta(3) - 2*Pi^2*log(2) = 4*A002162^3 + 21*A002117 - 2*A352769 = 24*Sum_{k >= 1} 1/((2^k)*(k^3)). See Bailey and Crandall (2001), p. 184.
Showing 1-8 of 8 results.