cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099232 a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3), with a(0) = 0, a(1) = 1, a(2) = 2.

Original entry on oeis.org

0, 1, 2, 6, 13, 32, 72, 169, 386, 894, 2053, 4736, 10896, 25105, 57794, 133110, 306493, 705824, 1625304, 3742777, 8618690, 19847022, 45703093, 105244160, 242353440, 558085921, 1285146242, 2959404006, 6814842733, 15693054752, 36137582952
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

Partial sums of A006130 (with leading zero).
Specify a triangle by T(n,0) = T(n+1,1) = A001045(n) and T(n,k) = T(n-1,k-1) + T(n-1,k-2) + T(n-2,k-2) otherwise. Then T(n,n)= a(n-1). - J. M. Bergot, May 24 2013

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,2,-3},{0,1,2},40] (* Harvey P. Dale, Mar 02 2024 *)

Formula

G.f.: x/((1-x)*(1-x-3*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k+1)*3^k.
a(n) = (1/2 + sqrt(13)/2)^n*(1/6 + 7*sqrt(13)/78) + (1/6 - 7*sqrt(13)/78)*(1/2 - sqrt(13)/2)^n - 1/3.
a(n+1) = Sum_{k=0..n} C(k+1,n-k+1)*3^(n-k). - Paul Barry, May 21 2006
a(n) = a(n-1) + 3*a(n-2) + 1, n > 1. - Gary Detlefs, Jun 21 2010
G.f.: Q(0)*x/(2-2*x), where Q(k) = 1 + 1/(1 - x*(4*k+1 + 3*x)/( x*(4*k+3 + 3*x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 09 2013