cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099242 (6n+5)-th terms of expansion of 1/(1 - x - x^6).

Original entry on oeis.org

1, 7, 34, 153, 686, 3088, 13917, 62721, 282646, 1273690, 5739647, 25864698, 116554700, 525233175, 2366870474, 10665883415, 48063918336, 216591552484, 976031547888, 4398313653120, 19820223058176, 89316331907533
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

A row of A099239.
Equals INVERT transform of A000389, C(n,5). [Gary W. Adamson, Feb 02 2009]

Crossrefs

Cf. A000389.

Programs

  • Mathematica
    CoefficientList[Series[1/((1 - x)^6 - x), {x, 0, 50}], x] (* G. C. Greubel, Nov 24 2017 *)
    LinearRecurrence[{7,-15,20,-15,6,-1},{1,7,34,153,686,3088},30] (* Harvey P. Dale, May 06 2018 *)
  • PARI
    my(x='x+O('x^50)); Vec(1/((1-x)^6-x)) \\ G. C. Greubel, Nov 24 2017

Formula

G.f.: 1/((1-x)^6-x).
a(n) = 7*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = Sum_{k=0..n} binomial(6*n-5*(k-1), k).
a(n) = Sum_{k=0..n} binomial(n+5*(k+1), k+5*(k+1)).
a(n) = Sum_{k=0..n} binomial(n+5*(k+1), n-k).