A099242 (6n+5)-th terms of expansion of 1/(1 - x - x^6).
1, 7, 34, 153, 686, 3088, 13917, 62721, 282646, 1273690, 5739647, 25864698, 116554700, 525233175, 2366870474, 10665883415, 48063918336, 216591552484, 976031547888, 4398313653120, 19820223058176, 89316331907533
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 16.
- Index entries for linear recurrences with constant coefficients, signature (7,-15,20,-15,6,-1).
Crossrefs
Cf. A000389.
Programs
-
Mathematica
CoefficientList[Series[1/((1 - x)^6 - x), {x, 0, 50}], x] (* G. C. Greubel, Nov 24 2017 *) LinearRecurrence[{7,-15,20,-15,6,-1},{1,7,34,153,686,3088},30] (* Harvey P. Dale, May 06 2018 *)
-
PARI
my(x='x+O('x^50)); Vec(1/((1-x)^6-x)) \\ G. C. Greubel, Nov 24 2017
Formula
G.f.: 1/((1-x)^6-x).
a(n) = 7*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = Sum_{k=0..n} binomial(6*n-5*(k-1), k).
a(n) = Sum_{k=0..n} binomial(n+5*(k+1), k+5*(k+1)).
a(n) = Sum_{k=0..n} binomial(n+5*(k+1), n-k).
Comments