A099251 Bisection of Motzkin sums (A005043).
1, 1, 3, 15, 91, 603, 4213, 30537, 227475, 1730787, 13393689, 105089229, 834086421, 6684761125, 54022715451, 439742222071, 3602118427251, 29671013856627, 245613376802185, 2042162142208813, 17047255430494497, 142816973618414817
Offset: 0
References
- G. F. Smith, On isotropic tensors and rotation tensors of dimension m and order n, Tensor (N.S.), Vol. 19 (1968), 79-88 (MR0224008).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. L. Andrews, Letter to N. J. A. Sloane, Apr 10 1978.
- Georgia Benkart and A. Elduque, Cross products, invariants, and centralizers, arXiv:1606.07588 [math.RT], 2016.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- MathOverflow, Moments of the trace of orthogonal matrices.
- G. F. Smith, Lectures on constitutive expressions, Mathematical models and methods in mechanics, pp. 645-678, Banach Center Publ., 15, PWN, Warsaw, 1985 (MR0874855). See p. 653.
- Eric Weisstein's World of Mathematics, Isotropic tensor.
Programs
-
Maple
G := (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)): Gser := series(G,x=0,60): 1, seq(coeff(Gser, x^(2*n)), n=1..25); # Emeric Deutsch a := n -> hypergeom([1/2, -2*n], [2], 4): seq(simplify(a(n)), n=0..21); # Peter Luschny, Jul 25 2020
-
Mathematica
Take[CoefficientList[Series[(1 + x - Sqrt[1 - 2 * x - 3 * x^2])/(2 * x * (1 + x)), {x, 0, 60}], x], {1, -1, 2}] (* Vaclav Kotesovec, Oct 17 2012 *)
-
Maxima
a(n):=sum(binomial(2*j,j)*(-1)^(j)*binomial(2*n+1,j+1),j,0,2*n+1)/(2*n+1); /*Vladimir Kruchinin, Apr 02 2017*/
-
PARI
x='x+O('x^66); v=Vec((1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, May 12 2013
Formula
Recurrence: n*(2*n + 1)*a(n) = (2*n - 1)*(13*n - 10)*a(n-1) - 3*(26*n^2 - 87*n + 76)*a(n-2) + 27*(n - 2)*(2*n - 5)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n + 3/2)/(16*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
Conjecture: a(n) = (2/Pi)*Integral_{t=0..1} sqrt((1 - t)/t)*(1 - 8*t + 16*t^2)^n. - Benedict W. J. Irwin, Oct 05 2016
a(n) = Sum_{j=0..2*n+1} (C(2*j,j)*(-1)^(j)*C(2*n+1,j+1))/(2*n+1). - Vladimir Kruchinin, Apr 02 2017
a(n) = hypergeom([1/2, -2*n], [2], 4). - Peter Luschny, Jul 25 2020
Extensions
More terms from Emeric Deutsch, Nov 18 2004
Comments