cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099253 (7*n+6)-th terms of expansion of 1/(1-x-x^7).

Original entry on oeis.org

1, 8, 43, 211, 1030, 5055, 24851, 122166, 600470, 2951330, 14505951, 71297834, 350434385, 1722411860, 8465785506, 41609980404, 204516223418, 1005212819668, 4940697593195, 24283905085013, 119357243593561, 586649945651116
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Crossrefs

Cf. A099239.

Programs

  • Magma
    [(&+[Binomial(7*n-6*j+6,j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 09 2021
  • Mathematica
    Table[Sum[Binomial[7*n-6*(j-1), j], {j,0,n}], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    [sum(binomial(7*n-6*j+6,j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021
    

Formula

G.f.: 1/((1-x)^7 - x);
Equals A099239(n, 7).
a(n) = 8*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7).
a(n) = Sum_{k=0..n} binomial(7*n - 6*(k-1), k).
a(n) = Sum_{k=0..n} binomial(n + 6*(k+1), k + 6*(k+1)).
a(n) = Sum_{k=0..n} binomial(n + 6*(k+1), n-k).