cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A369809 Expansion of 1/(1 - x^6/(1-x)^7).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 925, 1730, 3108, 5565, 10388, 20944, 45697, 104673, 242481, 553455, 1229305, 2650221, 5565127, 11465758, 23397041, 47757235, 98317135, 205108561, 433747259, 926655972, 1989584722, 4271185538, 9133958765, 19421679515
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-6 into parts 6 and 7.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^6/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\6, binomial(n-1+k, n-6*k));

Formula

G.f. (1-x)^7/((1-x)^7-x^6).
a(n) = A017847(7*n-6) = Sum_{k=0..floor((7*n-6)/6)} binomial(k,7*n-6-6*k) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/6)} binomial(n-1+k,n-6*k).
a(n) = A373912(n)-A373912(n-1). - R. J. Mathar, Jun 24 2024

A369807 Expansion of 1/(1 - x^4/(1-x)^7).

Original entry on oeis.org

1, 0, 0, 0, 1, 7, 28, 84, 211, 476, 1029, 2276, 5384, 13594, 35371, 91667, 232681, 577710, 1413462, 3442498, 8414484, 20717963, 51346109, 127678961, 317496621, 787941379, 1950774874, 4821609252, 11910608942, 29432604429, 72787392898, 180131835001
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-4 into parts 4 and 7.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^4/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-1+3*k, n-4*k));

Formula

a(n) = A369815(7*n-4) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 34*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-1+3*k,n-4*k).

A369808 Expansion of 1/(1 - x^5/(1-x)^7).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 7, 28, 84, 210, 463, 938, 1821, 3563, 7385, 16577, 39529, 96315, 232393, 546806, 1251461, 2801015, 6189683, 13647361, 30281870, 67918782, 153939843, 351309676, 803438125, 1834160110, 4170751775, 9443922772, 21316094357, 48041401423, 108291578580
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-5 into parts 5 and 7.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^5/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\5, binomial(n-1+2*k, n-5*k));

Formula

a(n) = A369816(7*n-5) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 22*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/5)} binomial(n-1+2*k,n-5*k).

A099239 Square array read by antidiagonals associated with sections of 1/(1-x-x^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 21, 13, 5, 1, 1, 32, 55, 41, 19, 6, 1, 1, 64, 144, 129, 69, 26, 7, 1, 1, 128, 377, 406, 250, 106, 34, 8, 1, 1, 256, 987, 1278, 907, 431, 153, 43, 9, 1, 1, 512, 2584, 4023, 3292, 1757, 686, 211, 53, 10, 1, 1, 1024, 6765, 12664, 11949, 7168, 3088, 1030, 281, 64, 11, 1
Offset: 0

Views

Author

Paul Barry, Oct 08 2004

Keywords

Comments

Rows include A099242, A099253. Columns include A034856. Main diagonal is A099240. Sums of antidiagonals are A099241.

Examples

			Rows begin
  1, 1,  1,   1,   1, ...                               A000012;
  1, 2,  4,   8,  16, ...      1-section of 1/(1-x-x)   A000079;
  1, 3,  8,  21,  55, ....     bisection of 1/(1-x-x^2) A001906;
  1, 4, 13,  41, 129, ...     trisection of 1/(1-x-x^3) A052529; (essentially)
  1, 5, 19,  69, 250, ...  quadrisection of 1/(1-x-x^4) A055991;
  1, 6, 26, 106, 431, ...  quintisection of 1/(1-x-x^5) A079675; (essentially)
		

Crossrefs

Programs

  • Magma
    A099239:= func< n,k | (&+[Binomial(k*(n-k) -(k-1)*(j-1), j): j in [0..n-k]]) >;
    [A099239(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021
  • Mathematica
    T[n_, k_]:= Sum[Binomial[k*(n-k) - (k-1)*(j-1), j], {j,0,n-k}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)
  • Sage
    def A099239(n,k): return sum( binomial(k*(n-k) -(k-1)*(j-1), j) for j in (0..n-k) )
    flatten([[A099239(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021
    

Formula

T(n, k) = Sum_{j=0..n} binomial(k*n -(k-1)*(j-1), j), n, k>=0. (square array)
T(n, k) = Sum_{j=0..n} binomial(k + (n-1)*(j+1), n*(j+1) -1), n>0. (square array)
T(n, k) = Sum_{j=0..n-k} binomial(k*(n-k) - (k-1)*(j-1), j). (number triangle)
Rows of the square array are generated by 1/((1-x)^k-x).
Rows satisfy a(n) = a(n-1) - Sum_{k=1..n} (-1)^(k^binomial(n, k)) * a(n-k).

A369805 Expansion of 1/(1 - x^2/(1-x)^7).

Original entry on oeis.org

1, 0, 1, 7, 29, 98, 316, 1043, 3536, 12083, 41168, 139750, 473824, 1607014, 5453022, 18506947, 62808496, 213144034, 723295969, 2454483506, 8329290739, 28265565587, 95919580313, 325504019213, 1104600373788, 3748469764612, 12720462563684, 43166996581876
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-2 into parts 2 and 7.

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-x^2/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-1+5*k, n-2*k));

Formula

a(n) = A369813(7*n-2) for n > 0.
a(n) = 7*a(n-1) - 20*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1+5*k,n-2*k).

A369806 Expansion of 1/(1 - x^3/(1-x)^7).

Original entry on oeis.org

1, 0, 0, 1, 7, 28, 85, 224, 567, 1485, 4117, 11802, 33909, 96182, 269402, 750275, 2090728, 5845015, 16384908, 45973701, 128944042, 361364501, 1012168575, 2834690172, 7939970075, 22244001961, 62323608147, 174620915138, 489240430938, 1370662332271, 3839992876850
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-3 into parts 3 and 7.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^3/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-1+4*k, n-3*k));

Formula

a(n) = A369814(7*n-3) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 36*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/3)} binomial(n-1+4*k,n-3*k).

A373928 Number of compositions of 7*n-2 into parts 1 and 7.

Original entry on oeis.org

1, 7, 35, 168, 819, 4025, 19796, 97315, 478304, 2350860, 11554621, 56791883, 279136551, 1371977475, 6743373646, 33144194898, 162906243014, 800696596250, 3935484773527, 19343207491818, 95073338508548, 467292702057555, 2296779231936167, 11288844908179562
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*HypergeometricPFQ[{1-n, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6, (10+n)/6}, {6/7, 8/7, 9/7, 10/7, 11/7, 12/7}, -6^6/7^7]/120; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
    LinearRecurrence[{8,-21,35,-35,21,-7,1},{1,7,35,168,819,4025,19796},40] (* Harvey P. Dale, Jul 28 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+4+6*k, n-1-k));

Formula

a(n) = A005709(7*n-2).
a(n) = Sum_{k=0..n} binomial(n+4+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)/((1-x)^7 - x).
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*hypergeom([1-n, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6, (10+n)/6], [6/7, 8/7, 9/7, 10/7, 11/7, 12/7], -6^6/7^7)/120. - Stefano Spezia, Jun 23 2024

A373929 Number of compositions of 7*n-3 into parts 1 and 7.

Original entry on oeis.org

1, 6, 28, 133, 651, 3206, 15771, 77519, 380989, 1872556, 9203761, 45237262, 222344668, 1092840924, 5371396171, 26400821252, 129762048116, 637790353236, 3134788177277, 15407722718291, 75730131016730, 372219363549007, 1829486529878612, 8992065676243395
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*(1 + n)*(2 + n)*(3 + n)*HypergeometricPFQ[{1-n, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6}, {5/7, 6/7, 8/7, 9/7, 10/7, 11/7}, -6^6/7^7]/24; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+3+6*k, n-1-k));

Formula

a(n) = A005709(7*n-3).
a(n) = Sum_{k=0..n} binomial(n+3+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)^2/((1-x)^7 - x).
a(n) = n*(1 + n)*(2 + n)*(3 + n)*hypergeom([1-n, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6], [5/7, 6/7, 8/7, 9/7, 10/7, 11/7], -6^6/7^7)/24. - Stefano Spezia, Jun 23 2024

A373930 Number of compositions of 7*n-4 into parts 1 and 7.

Original entry on oeis.org

1, 5, 22, 105, 518, 2555, 12565, 61748, 303470, 1491567, 7331205, 36033501, 177107406, 870496256, 4278555247, 21029425081, 103361226864, 508028305120, 2496997824041, 12272934541014, 60322408298439, 296489232532277, 1457267166329605, 7162579146364783
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*(1 + n)*(2 + n)*HypergeometricPFQ[{1-n, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6}, {4/7, 5/7, 6/7, 8/7, 9/7, 10/7}, -6^6/7^7]/6; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+2+6*k, n-1-k));

Formula

a(n) = A005709(7*n-4).
a(n) = Sum_{k=0..n} binomial(n+2+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)^3/((1-x)^7 - x).
a(n) = n*(1 + n)*(2 + n)*hypergeom([1-n, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6], [4/7, 5/7, 6/7, 8/7, 9/7, 10/7], -6^6/7^7)/6. - Stefano Spezia, Jun 23 2024

A373931 Number of compositions of 7*n-5 into parts 1 and 7.

Original entry on oeis.org

1, 4, 17, 83, 413, 2037, 10010, 49183, 241722, 1188097, 5839638, 28702296, 141073905, 693388850, 3408058991, 16750869834, 82331801783, 404667078256, 1988969518921, 9775936716973, 48049473757425, 236166824233838, 1160777933797328, 5705311980035178
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*(1 + n)*HypergeometricPFQ[{1-n,(2+n)/6, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6}, {3/7, 4/7, 5/7, 6/7, 8/7, 9/7}, -6^6/7^7]/2; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+1+6*k, n-1-k));

Formula

a(n) = A005709(7*n-5).
a(n) = Sum_{k=0..n} binomial(n+1+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)^4/((1-x)^7 - x).
a(n) = n*(1 + n)*hypergeom([1-n,(2+n)/6, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6], [3/7, 4/7, 5/7, 6/7, 8/7, 9/7], -6^6/7^7)/2. - Stefano Spezia, Jun 23 2024
Showing 1-10 of 11 results. Next