cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A369809 Expansion of 1/(1 - x^6/(1-x)^7).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 925, 1730, 3108, 5565, 10388, 20944, 45697, 104673, 242481, 553455, 1229305, 2650221, 5565127, 11465758, 23397041, 47757235, 98317135, 205108561, 433747259, 926655972, 1989584722, 4271185538, 9133958765, 19421679515
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-6 into parts 6 and 7.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^6/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\6, binomial(n-1+k, n-6*k));

Formula

G.f. (1-x)^7/((1-x)^7-x^6).
a(n) = A017847(7*n-6) = Sum_{k=0..floor((7*n-6)/6)} binomial(k,7*n-6-6*k) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 6*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/6)} binomial(n-1+k,n-6*k).
a(n) = A373912(n)-A373912(n-1). - R. J. Mathar, Jun 24 2024

A369807 Expansion of 1/(1 - x^4/(1-x)^7).

Original entry on oeis.org

1, 0, 0, 0, 1, 7, 28, 84, 211, 476, 1029, 2276, 5384, 13594, 35371, 91667, 232681, 577710, 1413462, 3442498, 8414484, 20717963, 51346109, 127678961, 317496621, 787941379, 1950774874, 4821609252, 11910608942, 29432604429, 72787392898, 180131835001
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-4 into parts 4 and 7.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^4/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-1+3*k, n-4*k));

Formula

a(n) = A369815(7*n-4) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 34*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-1+3*k,n-4*k).

A369808 Expansion of 1/(1 - x^5/(1-x)^7).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 7, 28, 84, 210, 463, 938, 1821, 3563, 7385, 16577, 39529, 96315, 232393, 546806, 1251461, 2801015, 6189683, 13647361, 30281870, 67918782, 153939843, 351309676, 803438125, 1834160110, 4170751775, 9443922772, 21316094357, 48041401423, 108291578580
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-5 into parts 5 and 7.

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x^5/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\5, binomial(n-1+2*k, n-5*k));

Formula

a(n) = A369816(7*n-5) for n > 0.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 22*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/5)} binomial(n-1+2*k,n-5*k).

A369805 Expansion of 1/(1 - x^2/(1-x)^7).

Original entry on oeis.org

1, 0, 1, 7, 29, 98, 316, 1043, 3536, 12083, 41168, 139750, 473824, 1607014, 5453022, 18506947, 62808496, 213144034, 723295969, 2454483506, 8329290739, 28265565587, 95919580313, 325504019213, 1104600373788, 3748469764612, 12720462563684, 43166996581876
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2024

Keywords

Comments

Number of compositions of 7*n-2 into parts 2 and 7.

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-x^2/(1-x)^7))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(n-1+5*k, n-2*k));

Formula

a(n) = A369813(7*n-2) for n > 0.
a(n) = 7*a(n-1) - 20*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 7.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1+5*k,n-2*k).

A373929 Number of compositions of 7*n-3 into parts 1 and 7.

Original entry on oeis.org

1, 6, 28, 133, 651, 3206, 15771, 77519, 380989, 1872556, 9203761, 45237262, 222344668, 1092840924, 5371396171, 26400821252, 129762048116, 637790353236, 3134788177277, 15407722718291, 75730131016730, 372219363549007, 1829486529878612, 8992065676243395
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*(1 + n)*(2 + n)*(3 + n)*HypergeometricPFQ[{1-n, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6}, {5/7, 6/7, 8/7, 9/7, 10/7, 11/7}, -6^6/7^7]/24; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+3+6*k, n-1-k));

Formula

a(n) = A005709(7*n-3).
a(n) = Sum_{k=0..n} binomial(n+3+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)^2/((1-x)^7 - x).
a(n) = n*(1 + n)*(2 + n)*(3 + n)*hypergeom([1-n, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6], [5/7, 6/7, 8/7, 9/7, 10/7, 11/7], -6^6/7^7)/24. - Stefano Spezia, Jun 23 2024
Showing 1-5 of 5 results.