cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A373928 Number of compositions of 7*n-2 into parts 1 and 7.

Original entry on oeis.org

1, 7, 35, 168, 819, 4025, 19796, 97315, 478304, 2350860, 11554621, 56791883, 279136551, 1371977475, 6743373646, 33144194898, 162906243014, 800696596250, 3935484773527, 19343207491818, 95073338508548, 467292702057555, 2296779231936167, 11288844908179562
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*HypergeometricPFQ[{1-n, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6, (10+n)/6}, {6/7, 8/7, 9/7, 10/7, 11/7, 12/7}, -6^6/7^7]/120; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
    LinearRecurrence[{8,-21,35,-35,21,-7,1},{1,7,35,168,819,4025,19796},40] (* Harvey P. Dale, Jul 28 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+4+6*k, n-1-k));

Formula

a(n) = A005709(7*n-2).
a(n) = Sum_{k=0..n} binomial(n+4+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)/((1-x)^7 - x).
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*hypergeom([1-n, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6, (10+n)/6], [6/7, 8/7, 9/7, 10/7, 11/7, 12/7], -6^6/7^7)/120. - Stefano Spezia, Jun 23 2024

A373929 Number of compositions of 7*n-3 into parts 1 and 7.

Original entry on oeis.org

1, 6, 28, 133, 651, 3206, 15771, 77519, 380989, 1872556, 9203761, 45237262, 222344668, 1092840924, 5371396171, 26400821252, 129762048116, 637790353236, 3134788177277, 15407722718291, 75730131016730, 372219363549007, 1829486529878612, 8992065676243395
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*(1 + n)*(2 + n)*(3 + n)*HypergeometricPFQ[{1-n, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6}, {5/7, 6/7, 8/7, 9/7, 10/7, 11/7}, -6^6/7^7]/24; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+3+6*k, n-1-k));

Formula

a(n) = A005709(7*n-3).
a(n) = Sum_{k=0..n} binomial(n+3+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)^2/((1-x)^7 - x).
a(n) = n*(1 + n)*(2 + n)*(3 + n)*hypergeom([1-n, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6, (8+n)/6, (9+n)/6], [5/7, 6/7, 8/7, 9/7, 10/7, 11/7], -6^6/7^7)/24. - Stefano Spezia, Jun 23 2024

A373931 Number of compositions of 7*n-5 into parts 1 and 7.

Original entry on oeis.org

1, 4, 17, 83, 413, 2037, 10010, 49183, 241722, 1188097, 5839638, 28702296, 141073905, 693388850, 3408058991, 16750869834, 82331801783, 404667078256, 1988969518921, 9775936716973, 48049473757425, 236166824233838, 1160777933797328, 5705311980035178
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*(1 + n)*HypergeometricPFQ[{1-n,(2+n)/6, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6}, {3/7, 4/7, 5/7, 6/7, 8/7, 9/7}, -6^6/7^7]/2; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+1+6*k, n-1-k));

Formula

a(n) = A005709(7*n-5).
a(n) = Sum_{k=0..n} binomial(n+1+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)^4/((1-x)^7 - x).
a(n) = n*(1 + n)*hypergeom([1-n,(2+n)/6, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6, (7+n)/6], [3/7, 4/7, 5/7, 6/7, 8/7, 9/7], -6^6/7^7)/2. - Stefano Spezia, Jun 23 2024

A373932 Number of compositions of 7*n-6 into parts 1 and 7.

Original entry on oeis.org

1, 3, 13, 66, 330, 1624, 7973, 39173, 192539, 946375, 4651541, 22862658, 112371609, 552314945, 2714670141, 13342810843, 65580931949, 322335276473, 1584302440665, 7786967198052, 38273537040452, 188117350476413, 924611109563490, 4544534046237850
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*HypergeometricPFQ[{1-n,(1+n)/6,(2+n)/6, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6}, {2/7, 3/7, 4/7, 5/7, 6/7, 8/7}, -6^6/7^7]; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+6*k, n-1-k));

Formula

a(n) = A005709(7*n-6).
a(n) = Sum_{k=0..n} binomial(n+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)^5/((1-x)^7 - x).
a(n) = n*hypergeom([1-n,(1+n)/6,(2+n)/6, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6], [2/7, 3/7, 4/7, 5/7, 6/7, 8/7], -6^6/7^7). - Stefano Spezia, Jun 23 2024
Showing 1-4 of 4 results.