A099267 Numbers generated by the golden sieve.
2, 3, 5, 6, 8, 10, 11, 13, 14, 16, 18, 19, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 39, 40, 42, 44, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 61, 63, 65, 66, 68, 69, 71, 73, 74, 76, 78, 79, 81, 82, 84, 86, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 103, 105, 107, 108, 110
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Jon Asier Bárcena-Petisco, Luis Martínez, María Merino, Juan Manuel Montoya, and Antonio Vera-López, Fibonacci-like partitions and their associated piecewise-defined permutations, arXiv:2503.19696 [math.CO], 2025. See p. 3.
- Index entries for sequences generated by sieves
Crossrefs
Programs
-
Haskell
a099267 n = a099267_list !! (n-1) a099267_list = f 1 [1..] 0 where f k xs y = ys' ++ f (k+1) (ys ++ xs') g where ys' = dropWhile (< y) ys (ys,_:xs') = span (< g) xs g = xs !! (h - 1) h = xs !! (k - 1) -- Reinhard Zumkeller, Sep 18 2011
-
Mathematica
t = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0, 1}}] &, {0}, 6] (*A189479*) Flatten[Position[t, 0]] (*A007066*) Flatten[Position[t, 1]] (*A099267*)
Formula
a(n) = floor(n*phi + 2 - phi) where phi = (1 + sqrt(5))/2.
a(a(...a(1)...)) with n iterations equals F(n+1) = A000045(n+1).
For n>0 and k>0 we have a(a(n) + F(k) - (1 + (-1)^k)/2) = a(a(n)) + F(k+1) - 1 - (-1)^k. - Benoit Cloitre, Nov 22 2004
a(n) = a(a(n)) - n. - Marc Morgenegg, Sep 23 2019
Comments