A099304 Least k > 0 such that (n+k)' = n' + k', where n' denotes the arithmetic derivative of n.
2, 1, 6, 2, 10, 3, 14, 4, 18, 5, 14, 6, 26, 7, 30, 8, 34, 9, 38, 10, 42, 11, 46, 12, 50, 13, 54, 14, 26, 15, 62, 16, 42, 17, 4, 18, 74, 19, 78, 20, 82, 21, 86, 22, 90, 23, 38, 24, 98, 25, 102, 26, 106, 27, 27, 28, 114, 29, 118, 30, 122, 31, 126, 32, 130, 33, 18, 34, 138, 8, 142
Offset: 1
Keywords
References
- See A003415
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.List (find) import Data.Maybe (fromJust) a099304 n = succ $ fromJust $ elemIndex 0 $ zipWith (-) (drop (fromInteger n + 1) a003415_list) (map (+ n') $ tail a003415_list) where n' = a003415 n -- Reinhard Zumkeller, May 09 2011
-
Mathematica
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[k=1; While[dn[n]+dn[k] != dn[n+k], k++ ]; k, {n, 100}]
Comments