cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099305 Number of solutions of the equation (n+k)' = n' + k', with 1 <= k <= 2n, where n' denotes the arithmetic derivative of n.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 1, 2, 3, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 2, 1, 3, 3, 3, 1, 2, 2, 3, 2
Offset: 1

Views

Author

T. D. Noe, Oct 12 2004

Keywords

Comments

Observe that when n and c*n have the same parity, a(c*n) >= a(n) for all integers c. For even n, there are always at least two solutions, k=n/2 and k=2n. For odd n, k=2n is always a solution.
a(A258138(n)) = n and a(m) != n for m < A258138(n). - Reinhard Zumkeller, May 21 2015

References

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099304 (least k > 0 such that (n+k)' = n' + k').
Cf. A258138.

Programs

  • Haskell
    a099305 n = a099305_list !! (n-1)
    a099305_list = f 1 $ h 1 empty where
       f x ad = y : f (x + 1) (h (3 * x + 1) ad)  where
                y = length [() | k <- [1 .. 2 * x],
                                 let x' = ad ! x, ad ! (x + k) == x' + ad ! k]
       h z = insert z (a003415 z) .
              insert (z+1) (a003415 (z+1)) . insert (z+2) (a003415 (z+2))
    -- Reinhard Zumkeller, May 21 2015
  • Mathematica
    dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[lst={}; k=0; While[k<2n, k++; While[k<=2n && dn[n]+dn[k] != dn[n+k], k++ ]; If[dn[n]+dn[k]==dn[n+k], AppendTo[lst, k]]]; Length[lst], {n, 100}]