A099308 Numbers m whose k-th arithmetic derivative is zero for some k. Complement of A099309.
0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, 29, 30, 31, 33, 34, 37, 38, 41, 42, 43, 46, 47, 49, 53, 57, 58, 59, 61, 62, 65, 66, 67, 70, 71, 73, 77, 78, 79, 82, 83, 85, 89, 93, 94, 97, 98, 101, 103, 105, 107, 109, 113, 114, 118, 121, 126, 127, 129, 130
Offset: 1
Keywords
Examples
18 is on this list because the first through fifth derivatives are 21, 10, 7, 1, 0.
References
- See A003415.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Victor Ufnarovski and Bo Ã…hlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003, #03.3.4.
Crossrefs
Cf. A003415 (arithmetic derivative of n), A099307 (least k such that the k-th arithmetic derivative of n is zero), A099309 (complement, numbers whose k-th arithmetic derivative is nonzero for all k), A351078 (first noncomposite reached when iterating the derivative from these numbers), A351079 (the largest term on such paths).
Cf. A276086, A328116, A351255 (permutation of nonzero terms), A351257, A351259, A351261, A351072 (number of prime(k)-smooth terms > 1).
Programs
-
Mathematica
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; d1=Table[dn[n], {n, 40000}]; nLim=200; lst={1}; i=1; While[i<=Length[lst], currN=lst[[i]]; pre=Intersection[Flatten[Position[d1, currN]], Range[nLim]]; pre=Complement[pre, lst]; lst=Join[lst, pre]; i++ ]; Union[lst]
-
PARI
\\ The following program would get stuck in nontrivial loops. However, we assume that the conjecture 3 in Ufnarovski & Ã…hlander paper holds ("The differential equation n^(k) = n has only trivial solutions p^p for primes p"). A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s)); isA099308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n)); \\ Antti Karttunen, Feb 14 2022
Formula
For all n >= 0, A328309(a(n)) = n. - Antti Karttunen, Feb 14 2022
Comments